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6. FRACTURE MECHANICS 

Applying fracture mechanics to concrete design can provide much insight on how the size of 

a structural element may affect the ultimate load capacity. It can also be a useful tool in 

predicting crack propagation. Consider a case where you are responsible for determining if a 

given crack in a large structure such as a concrete dam will propagate catastrophically under 

certain loading conditions. You can adopt a strength criterion that predicts that a crack will 

propagate when the stresses reach the ultimate tensile strength of the material. For sharp 

cracks, however, the theory of linear elasticity predicts that the stresses at the tip of the crack 

go to infinity, thereby assuming that the crack will propagate no matter how small the applied 

stress, an unlikely scenario. 

Fracture mechanics, on the other hand, provides an energy criterion that does not have 

such drawbacks and allows for more precise predictions of the stability of the crack. The 

application of this energy criterion can be particularly useful when using traditional finite 

element methods to study cracks where mesh sensitivity becomes a problem. Figure (6.1) 

shows an example where the result is greatly affected by the size of the mesh when a strength 

criterion is used, however, little mesh sensitivity is observed when an energy criterion based 

on fracture mechanics is employed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6.1): Example of mesh sensitivity. 



 

P
ag

e2
 

6.1 Linear Elastic Fracture Mechanics 

Figure (6.2a and b) show that when the crack is extended under constant load, the change in 

potential energy of the external load due to crack growth is PΔx and the increase in strain 

energy is 1/2 PΔx. In other words, the decrease in potential energy of the external load is 

twice the increase in strain energy. During crack extension there is an increase of surface 

energy 4aγ (remember, the crack length is 2a, and both the upper and lower surface of the 

crack should be included). Griffith (1920) used a result obtained by Inglis (1913) that the 

change in strain energy due to an elliptical crack in a uniformly stressed plate is πa
2
σ

2
/E, and 

therefore, the change in potential energy of the external load is 2πa
2
σ

2
/E. The energy change 

of the plate, due to the introduction of the crack, is given by 

 

                                              
      

 
 
     

 
                            

(6.1)   

 

Minimizing the energy in relation to the crack length, 
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gives the critical stress (for plane stress) 
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                                                          (6.3)   

 

This equation is significant because it relates the size of the imperfection (2a) to the tensile 

strength of the material. It predicts that small imperfections are less damaging than large 

imperfections, as observed experimentally. 
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One problem with Griffith’s approach was that the surface energy obtained from his equation 

was found to be orders of magnitude higher than the one obtained using thermodynamical 

tests unrelated to fracture. The reason is that because the dissipative processes associated with 

the fracture propagation absorbs a significant amount of energy, the energy required for crack 

extension exceeds the thermodynamical value. Irwin (1957) proposed that instead of using 

the thermodynamic surface energy, one should measure the characteristic surface energy of a 

material in a fracture test. He introduced the quantity Gc as the work required to produce a 

unit increase in crack area. Gc is also referred to as the critical energy release rate. 

Typically, Gc is determined experimentally, using simple specimen configuration. Once Gc 

for a given material is known, assuming that it is a material property, we have a powerful 

method for determining if a given crack will or will not propagate under any other loading 

condition. The process is quite simple: the energy release per unit increase crack area, G, is 

computed; if the energy release rate is lower than the critical energy release rate (G < Gc), the 

crack is stable. Conversely, if G > Gc the crack propagates. In the particular case when the 

energy release is equal to the critical energy release rate (G = Gc) a metastable equilibrium is 

obtained. 

The following analysis illustrates how to compute the value of Gc. Considering the plate, 

shown in Figure (6.2), with thickness B, we can express the energy released by crack growth 

Δa as 

                                                                                                           (6.4) 

   

Where ΔUe is the change in elastic energy due to crack growth Δa. In the limit: 

 

                                                     
  

  
 
   

  
                                                     (6.5) 

 

Introducing the compliance c = Δx/P, the strain energy Ue is given by 

 

                                                          
   

 
                                                           (6.6) 

Equation (6.5) becomes 
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                                            (6.7) 

or 

 

                                                          
  

  

  

  
                                                          (6.8) 

 

When the compliance vs. crack length has been obtained for a given specimen configuration, 

the critical energy release rate Gc can be determined by recording the load at fracture. 

 

 

Figure (6.2): (a) Plate with crack 2a; (b) Load-displacement diagram. 
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Example 4.1: Compute the energy release rate for the double cantilever beam shown in 

Figure (6.3). In addition, study the stability of the crack in its own plane under (a) load 

control and (b) displacement control. Shear deflections may be ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The deflection of each cantilever can be easily found using simple beam theory: 

 

                                                          
 

 
 
   

   
                                                            (6.9) 

 

where E is the elastic modulus and I is the moment of inertia, 
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                                                     (6.10) 

 

The compliance is given by 

                                                       
 

 
 
   

   
                                                        (6.11) 

 

Therefore the energy release rate is given by 

 

                                                    
  

  

  

  
 
    

   
                                                 (6.12) 

 

 

Stability criteria: A crack is stable if the derivative of the strain energy rate, with respect to 

crack length is negative. In other words, 

 

                                                       
 

 

  

  
                                                             (6.13)   

1. For load control: 

Figure (6.3): Double cantilever beam with thickness B. 
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                                                           (6.14)   

 

(1/G)(∂G/∂a) = 2/a is a positive number, therefore the crack will propagate in an unstable 

way. 

 

2. For displacement control: Combining Eqs. (6.12) and (6.11), the energy release rate can be 

expressed in terms of the deflection: 

 

                                                       
     

    
                                                           (6.15)   

and 

                                                    
  

  
  

     

   
                                                       (6.16)   

 

(1/G)(∂G/∂a) = –4/a is a negative number, therefore, the crack will propagate in a stable 

manner. 

 

6.1.1 Stress-intensity factor 

Let us now analyze what happens to the stress field near the tip of a crack for the three 

configurations shown in Figure (6.4). The three types of relative movements of two crack 

surfaces are classified as (a) Mode I: opening or tensile mode, (b) Mode II: sliding or in-

plane shear mode, and (c) Mode III: tearing or antiplane shear mode. 

 

Most practical design situations and failures are associated with Mode I. As shown in 

Figure (6.5), the stresses at the tip of the crack for this mode are given by 
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KI is called stress-intensity factor for Mode I. Dimensional analysis of Eqs. (6.17) to (6.19) 

indicates that the stress-intensity factor must be linearly related to stress and to the square 

root of a characteristic length. Assuming that this characteristic length is associated with the 

crack length, we have 

 

                                                     √   ( )                                                  (6.20)   

 

where f(g) is a function that depends on the specimen and crack geometry. 
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The stress-intensity factor can be computed for a variety of crack shape configurations. 

Suppose we measure the value of the stress at fracture in a given test. Using Eq. (6.20) we 

determine the critical stress intensity factor Kc or, as it is usually called in the literature, the 

fracture toughness. If we make the assumption that Kc is a material property (as we did for 

critical energy rate Gc) we have another powerful tool of predicting critical combinations of 

stress and crack length for other configurations of Mode I. 

Irwin showed that the energy release rate and the stress intensity factor approaches are 

equivalent. For linear elastic behavior, considering only Mode I and plane stress condition: 

 

                                                           
  
 

 
                                                        (6.21)   

 

 

 

 

Figure (6.4): Basic modes of loading. 

Figure (6.5): Coordinate system at the tip of the crack. 
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6.2 Non-Linear Fracture Mechanics for Concrete 

The first experimental research on fracture mechanics of concrete was performed by Kaplan 

in 1961. Subsequent research studied the effects of various parameters on Kc and Gc. 

Experimental studies indicated that the fracture toughness increases with increasing (a) 

aggregate volume (b) maximum-size aggregate, and (c) roughness of the aggregate. As 

expected, the toughness decreases with increasing water-cement ratio and increasing air 

content. One of the problems encountered in the early stages of this research was that, instead 

of being a material property, the value of the fracture toughness Kc, was strongly influenced 

by the size of the specimen tested. It soon became apparent that fracture mechanics 

measurements should not be made on small concrete specimens. 

 

To analyze what happens to the ultimate stress when we change the dimensions of a 

cracked plate (Figure 6.6b) let us study the following case proposed by Cedolin (1986) The 

stress intensity for this configuration is given by    √   (   ) where f(a/b) is a 

correction factor for the geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (6.6): (a) Variation of σy at the crack tip in an elastic body; (b) cracked plate under tension; (c) 

comparison between ultimate values of applied tension, calculated according to fracture 
mechanics and tensile strength; (d) effect of plate width for geometrically similar plates. 
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The critical stress pc associated with the fracture toughness Kc is given by 

 

                                                    
  

√   (   )
                                                    (6.22)   

 

This relationship is shown in Figure (6.6b). Instead of the fracture mechanics criteria, let us 

now analyze the strength criteria. The average tensile stress ft in the plane that contains the 

crack will vary because the crack dimensions affect the net section of the specimen. This 

relationship is given by 

 

                                                      (     )                                            (6.23)  

or  

                                                       (  
 

 
)                                                 (6.24)  

 

which is also shown in Figure (6.6c). Therefore, for a small crack the strength criteria 

dominates, and we cannot infer fracture mechanics properties. 

It is also fruitful to study the case of geometrically similar plates (a/b constant) and 

varying b. Equation (6.22) may be rewritten as 

 

                                                    
  

√   (   )
                                                    (6.25)   

 

where   (   )   √     (   ) . Since (a/b) is constant, when Eq. (6.25) is plotted as 

function of b in a logarithmic scale it gives a straight line with slope −1/2 (Fig. 6.6d). 

Equation (6.24) is also plotted in Figure (6.6d), and because a/b is constant it yields a straight 

line with zero slope. Again, we conclude that for small specimen sizes the strength criteria 

dominates and fracture mechanics properties cannot be inferred. 

 

The ratio between the fracture mechanics criteria (Eq. 6.25) and the strength criteria (Eq. 

6.24) is given by 
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                                              (6.26)   

 

It is convenient to define a brittleness number,        √ , to characterize the nature of the 

collapse; the lower the brittleness number the more brittle the behavior of the specimen. 

Fracture occurs in specimens with a small brittleness number, that is, for materials with a 
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comparatively low fracture toughness, a high tensile strength, and in large specimens. The 

brittleness number characterizes the nature of the collapse for one-dimensional problems; for 

beams or slabs in flexure, additional information on the slenderness is necessary. It should be 

noted that the physical dimensions of the tensile strength [FL
–2

] and fracture toughness     

[FL
–3/2

] are different; however, the brittleness number is dimensionless. 

 

The brittleness number can also be expressed as a function of elastic modulus E and energy 

release rate G, instead of the fracture toughness Kc  √   (  √ ) . This number helps to 

explain the experimental results where concretes made with high-strength silica fume cement 

paste usually have more fine microcracks than normal strength concrete (Fig. 6.6). In the 

high-strength matrix, the tensile strength can be two to five times greater than the normal-

strength matrix; however, the increase in fracture energy or elastic modulus is not as much. 

Consequently, a high-strength matrix has a much lower brittleness number and is more 

susceptible to the development of cracks. A complete description of scaling laws for brittle 

materials is given by Bazant (2004). 

 

 

 

 

 

 

 

 

 

 

6.3 Fracture Process Zone 

Microcracks in concrete originate from strain localization and develop ahead of the crack tip, 

creating what is referred to as a fracture process zone. The characterization of this zone is of 

fundamental importance in the development of modern nonlinear fracture mechanics for 

concrete. Although the experimental characterization is challenging, recently new methods 

have been proposed (See Mehta for more details). 

 

The additional elongation in the fracture zone can be estimated by introducing the 

additional strains εw over the length of the fracture zone, as shown in Figure (6.7). 

 

                                                      ∫                                                        (6.27)   

Figure (6.6): Structure of crack front in ordinary cement paste and in silica fume cement paste. 
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Unfortunately, the real strain distribution is often very hard to incorporate into an analytical 

model, and to date only simplified models have been proposed. Bazant and co-workers 

developed the smeared crack band model, where the entire fracture zone is represented by a 

band of microcracked material with width wc. The model assumes a linear stress-strain 

relationship Ec up to the tensile strength ft and a strain-softening relationship with slope Et. 

The area enclosed by the diagram in Figure (6.8) represents the fracture energy Gf given by 

 

                                      ∫      
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)                             (6.28)   

 

This method proved to be very successful when used with the finite element method. Further 

simplification is obtained when the fracture process zone is modelled as a “tied crack” (Fig. 

6.7), that is, a crack with a width w and a specified stress-elongation (σ – w) relationship. 

Because the aim of this model is to replace the real fracture process zone by an equivalent 

fictitious tied crack, this representation has been called the fictitious crack model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6.7): Strain distribution during fracture and two possible assumptions. 
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6.3.1 Fictitious crack model 

The fictitious crack model was created and expanded upon by Hillerborg, Petersson, and co-

workers. One of the objectives of the model is to capture the complex nature of concrete in 

tension. The amount of microcracking in concrete, which is in tension, is small before the 

peak stress is reached, therefore, the deformation ε along the specimen can be assumed to be 

uniform, and the total elongation Δl of the specimen can be expressed in terms of the length 

of the specimen l (Fig. 6.9). 

                                                                                                                        (6.29) 

   

A localized fracture zone starts to develop just after the peak load is reached. In the model, 

this zone is assumed to form simultaneously across an entire cross section. As the total 

elongation increases, the stress decreases and the region outside the fracture zone experiences 

an unloading, while inside the fracture zone, there is softening. The fracture zone remains 

localized and does not spread along the specimen, this is called strain localization, somewhat 

similar to that seen in plasticity. Beyond the peak stress, the total elongation of the specimen 

is the sum of the uniform deformation outside the fracture zone and the additional localized 

deformation w existing in the fracture zone, as shown in Figure (6.9b). 

 

                                                                                                                  (6.30) 

 

As illustrated in Figure (6.9c), two relationships are needed to characterize the mechanical 

behaviour of concrete in tension: (1) a stress-strain (σ – ε) relationship for the region outside 

the fracture zone, and (2) a stress-elongation (σ – w) relationship for the fracture zone. Note 

that in the σ – ε diagram, the horizontal axis is given by the strain, which is nondimensional, 

while for the σ – w diagram, the horizontal axis is given by the elongation, which has units of 

length. 

Figure (6.8): Stress-strain relationship for the smeared crack band model. 
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Although the curves shown in Figure (6.9c) may be influenced by the rate of loading and 

temperature, they are assumed to be independent of the shape and size of the specimen. 

Figure (6.9d) shows simplified stress-strain and stress-elongation relationships. There is no 

fundamental reason to choose linear or bilinear relationships with the exception that they are 

numerically simple and seem to satisfy experimental results rather well. It should be 

mentioned that other researchers preferred to use a nonlinear stress-elongation (σ – w) 

relationship. 

The fracture energy Gf is equal to the area under the stress-elongation curve. 

 

                                                   ∫  ( )
 

 
                                                   (6.31) 

 

Figure (6.10a) shows typical experimental stress-elongation curves for different concrete 

mixture proportions. The results presented in Figure (6.10a) are redrawn in Figure (6.10b) to 

show that, even with different composition, the normalized stress-elongation curves have the 

same shape. 

For very large specimens with deep pre-existing cracks, the fracture energy Gf 

corresponds to the parameter Gc of the linear elastic fracture mechanics. While its 

measurement is fairly easy to make, the determination of the σ – w relationship is not. 

Therefore, formulations, based on the fracture energy, such as the one indicated in Figure 

(6.9), are usually preferred in analysis. 
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The fracture energy of concrete Gf is generally determined experimentally using a notched 

specimen loaded in flexure, according to RILEM Recommendation TC-50 FMC. The value 

for Gf is obtained by computing the area under the load-deflection relationship and dividing it 

by the net cross-section of the specimen above the notch. When experimental data are not 

available, CEB-FIP model code 1990 recommends the use of the following expression: 

 

                                                 (        )
                                                 (6.32) 

 

where αf is a coefficient, dependent on the maximum aggregate size dmax (Table 6.1), and fcmo 

is equal to 10 MPa. 

The stress-strain and stress-elongation curves are related in the following manner: the 

slope of the stress-strain diagram is E, and the slope of the stress-deformation curve is 

proportional to ft /(Gf /ft). The ratio between the two slopes has units of length called the 

characteristic length (lch) of the material: 

 

Figure (6.9): Fictitious crack model description of tensile fracture: (a) Realistic structural 
behavior; (b) model of structural behavior; (c) model for description of 
properties of material; and (d) simplified properties of material. 

Figure (6.10): (a) σ-w curves for four concrete mixes; (b) the curves from (a) are redrawn to 
show that their shape is similar 
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                                                            (6.33) 

 

 

Table 6.1: Coefficient αf as function of the maximum aggregate size dmax 

 

 

 

 

 

 

 

 

 

The characteristic length is often considered to be a material property, and it gives a measure 

of the brittleness of the material. Cement paste has a characteristic length in the range 5 to15 

mm, mortar in the range 100 to 200 mm, and concrete 200 to 400 mm. Compared to normal-

strength concrete, high-strength concretes and light-weight aggregate concrete have lower 

characteristic lengths. 

The importance of the stress-strain and stress-elongation relationships in the design of 

concrete in tension must be stressed. The CEB-FIP model code 1990 recommends the 

following stress-strain relationships for uniaxial tension (Figure 6.11). 

 

                                                                                                                (6.34) 
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                                               (6.35) 

 

 

 

 

 

 

 

 

 

 

 Figure (6.11): Stress-strain and stress-elongation for concrete in uniaxial tension.  
(From CEB-FIP Model Code 1990). 
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where Ec = tangent modulus of elasticity in MPa 

        fctm  = tensile strength in MPa 

        σct   = tensile stress in MPa 

        εct    = tensile strain 

 

For the cracked section, the following bilinear stress-crack opening relation is recommended: 
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)                                                       (6.36) 

 

                         
        

     
(    )                                                        (6.37) 

and  

 

                                
   

    
                                 

  

    
                           (6.38) 

 

where w1 = crack opening (mm) 

           wc = crack opening (mm) for σct = 0 

           Gf = fracture energy [Nm/m2] 

           βF = coefficient given in Table 13-7 

 

 

Table 6.1: Crack opening at σct = 0 

 

 

 

 


