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Strain at point: The general two-dimensional state of strain at a point is show below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two dimensional strain transformation equations are very similar to the 2D stress 

transformation equations. The analysis is based on a plane strain state in which all 

strains in the z-direction are zero.  The analysis can also be used for a plane stress 

state with one minor modification.  A material cannot have both plane stress and 

plane strain states at the same time. 

The relationship between the strains at a point measured relative to a set of axes x-y 

and a set x'-y' which have the same origin but are rotated counter-clockwise from the 

original axes by an angle  are given by  for the normal strains and by for the shearing 

strain.  Note the similarity of form between these equations and the stress 

transformation equations. 
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for the shearing strain.  Note the similarity of form between these equations and the 

stress transformation equations. 

 

 

Principal Strains and Maximum Shearing Strain 

 

As with the stresses there are maximum and minimum (principal) values of the 

normal strains for particular orientations at the point and maximum shearing strains.  

The principal strains are given by 

and the maximum shearing strain is given by 

The orientation of the larger principal strain to the positive x-direction is given by 

The direction of the smaller principal strain is perpendicular to the first.  The  

 

directions involved with the maximum shearing strain are the two directions at 45° to 

both of the principal directions. 

 

 

Mohr's Circle for Strain 

A Mohr's Circle mapping between the strains 

acting with respect to a set of x-y axes at a point 

and a point in the strain plane can be made.  

The same rules apply as for the stress circle 

with  replacing  and γ/2 replacing .  This 

makes the radius of the circle equal to half the 

in-plane maximum shearing strain) 
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Strain Gauge Rosette 

A strain gauge rosette is a term for an arrangement of two or more strain gauges that 

are positioned closely to measure strains along different directions of the component 

under evaluation. Single strain gauges can only measure 

strain effectively in one direction, so the use of multiple 

strain gauges enables more measurements to be taken, 

providing a more precise evaluation of strain on the 

surface being measured. 

 

 

Case 1: Construction of The 45
o
Circle 
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Case 2: Construction of The 60 
o
 Circle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 1:  
 

A single horizontal force P of 150 lb magnitude 

is applied to end D of lever ABD. Determine (a) 

the normal and shearing stresses on an element at 

point H having sides parallel to the xand yaxes, 

(b) the principal planes and principal stresses at 

the point H. 
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Problem 2: A “0°-60°-120°” strain gauge rosette is bonded to 

the surface of a 

thin steel plate. Under one loading condition, the strain 

measurements 

are εA = 60 με, εB = 135 με, εC = 264 με. Find the principal 

strains, their orientations, and the principal stresses. 

 

 

Problem 3: A thin plate of width (b), 

thickness (t) and length (L) is subjected to 

an axial compressive force (p) as shown in 

figure below. Find: 

a- the shortening of the plate parallel to the 

force p. 

b- the component of normal strain in the 

thin direction. 

 

 

 

 

 

Problem 4: show that  the line elements at the point x, y that have the maximum and 

minimum rotation are those in the two perpendicular direction θ determined by: 
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Equilibrium Equations  

There are two types of forces acting on a body: 

1. Surface forces (or traction forces): they act on the surface of a body. 

2. Body forces: they act within a body, like gravity force (or self-weight)   

Consider a small rectangular block element which is subjected to  body forces X,Y. 

The stresses changes but the equilibrium must be satisfied in x and y directions. 
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The equilibrium Eqs. for forces in x and y directions will be:  

 

 

 

 

Where: X,Y denote the components of body force per unit volume. In practical 

applications the weight of body is usually the only body force (ρ=mass/unit volume). 

Then the Eq. become:   

 

 

 

 

These are the differential equations of equilibrium for 2D problems. 

 

 

Boundary Conditions:  

 

Eqs. of equilibrium must satisfied at all point throughout the 

volume of the body. Taking small triangular prism as shown 

in Figure.  ̅  and  ̅  are surface force components per unite 

area, at this point of the boundary, we have: 
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Where: l and m are the direction cosines of the normal N to boundary. If taking the 

side of plate parallel to the sides of plate the Eqs. above can be simplified, since for 

this part of boundary the normal N parallel to y-axis; hence l= 0 and m= ±1. Then 

 

It is seen that at the boundary the force components equal to the components of the 

surface forces per unit area of the boundary. 

 

 

Strain Compatibility:   

In 2D-dimentional problems only three components need to be considered, namely,  

 

 

Differentiating the first of Eqs. twice with respect to y, the second twice with respect 

to x and the third once each with respect to x and y yields 

 

                                                                                            Condition of compatibility 

 

 In case of plane stress: σz =0 

                               

                                                                        

                                                

                                                 Substituting in   Eq. (3), we find: 

  

                   

 

 

By differentiating 1
st
 eq. of equilibrium w.r.t x and  differentiating 2

nd
  eq. of 

equilibrium w.r.t y,   
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    ……. Hence the compatibility Eq. for plane 

stress becomes:   
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                                                                                                                    …..(4)  

 

 In case of plane strain: εz = 0,         

                                                                                                                                   

 

 

 

 

Similar we get:                                                                                       …..(5) 

  

 For body forces involving gravity only (self-weight) 

X=0    and     Y= ρg  

 

                                                                        ……  (6) For both plane stress and strain 

 

 

 

Problem 5: The Figure represent a tooth on a plate in state of plane stress 

In the plane of  the paper. The face of tooth (the two straight lines) are free from 

force. Prove that there is no stress at all at the apex of the tooth. 

 

 

 

 

 

 

Problem 6: Using stress-strain relations and equations of equilibrium, show that in 

the absence of body force the displacements in problems of plane stress must satisfy  
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