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Two Dimensional Problems in Cartesian 

Coordinate System                                     

 

INTROUDUCTION 

Suppose a body (in xy-plane) is under the external force shown in Figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

It's  required to find the stress (σx ,σy and τxy) at any point inside the body (neglect the 

body force). First remember the equations of equilibrium: 

 

 

 

 

There are two equations, but with three unknown (σx ,σy and τxy). Then the problem is 

statically indeterminate. One more equation is needed. Use the compatibility of 

strains:  
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Differentiate eq. (1) w.r.t.  x and differentiate eq. (2) w.r.t.  y and add. Then substitute 

in eq. (3). Simplify and arrange to get: 

 

 

But this is not a useful equation. Airy introduced the concept of stress function  = 

(x,y), where:   

 

 

 

And  = (x,y) is an arbitrary form called Airy’s stress function. It is easily shown that 

this form satisfies equilibrium (zero body force case). Substitute eqs. (5) in eq. (3) or 

in eq. (4) to get: 

 

 

 

Solving this Eq. and applying B.C. give the stress distribution.  

 

An alternatives methods of choosing stress functions is using polynomials from 

Pascal Triangle.  
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SOLUTIONS OF TWO-DIMENSIONAL PROBLEMS BY THE USE OF 

POLYNOMIALS 

It has been shown that the solution of two-dimensional problems, when body 

forces are absent or are constant, is reduced to the integration of the differential 

equation: 

 

 

By taking polynomials of various degrees, and suitably adjusting their 

coefficients, a number of practically important problems can be solved. Recalling 

Airy's stress function:  

 

 

When body forces are weight only. Solve this equation & apply B.C. to get stress 

distribution.  

 Polynomial of the First Degree : Let φ1 = a1x + b1y 

 Now, the corresponding stresses are :  

 

 

 

 

 

                                             There is no stress 

 

 Polynomial of the Second Degree : Let  

 The corresponding stresses are : 

 

 

 

 

 

 

                                                                Fig. 1 
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All three stress components are constant, throughout the body, i.e., the polynomial of 

2
nd

  stress function represents a combination of uniform tensions or compressions in 

two perpendicular directions nd a uniform shear. The forces on the boundaries must 

equal the stresses at these points; in the case of a rectangular plate with sides parallel 

to the coordinate axes these forces are shown in Figure 1. 

This function represents a combination of uniform tensions or compressions in two 

perpendicular directions and a uniform shear. For case of pure shear a2 & c2 =0 

 

 Polynomial of the Third Degree :  

The corresponding stresses are : 

 

 

 

 

 

 

This stress function gives a linearly varying stress field. It should be noted that the 

magnitudes of the coefficients a3 ,b3 ,c3 and d3 are chosen freely since the 

expression for υ3 is satisfied irrespective of values of these coefficients.  

Now, if  a3 = b3 = c3 = 0 except  d3 , we get from the 

stress components σx = d3,  σy =  0,  τxy = 0. This 

corresponds to pure bending on the face perpendicular 

to the x-axis: At y = -h, σx = - d3h  and  y = h, σx = d3h. 

The variation of σx with y is linear as shown in the 

Figure 2.   

Fig. 2. 

Similarly, if all the coefficients except  b3 are zero, then we get:  

σx = 0,  σy = b3y,  τxy =- b3x 

 

The stresses represented by the above stress field will vary as shown in the Figure 3. 

The stress y s is constant   with x (i.e. constant along the span L of the beam), but 

varies with y at  a particular section.  At y = +h, σy = b3h (i.e., tensile), 
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while at y = -h, σy = -b3h (i.e. compressive).  

σx  is zero throughout.  Shear stress τxy is zero at x = 0 and 

is equal to -b3l at x = l. At any other section, the shear 

stress is proportional to x. 

                                                                                

 

 

 Fig. 3 

 

 Polynomial of the Fourth Degree:  

The corresponding stresses are : 

 

 

 

 

 

Now, taking all coefficients except d4 

 equal to zero, we find 

 

 

 

                                                                 Fig. 4 

 

On the longitudinal sides, y = ±h are uniformly distributed shearing forces. At the 

ends, the shearing forces are distributed according to a parabolic distribution. The 

shearing forces acting on the boundary of the beam reduce to the couple.  

 

This couple balances the couple produced by the normal forces along the side x = 

L of the beam. 
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 Polynomial of the Fifth Degree :  

 

 

The corresponding stresses are : 

 

 

 

 

 

 

Here the coefficients a5 ,b5 ,c5 ,d5 are arbitrary, and in adjusting them we obtain 

solutions for various loading conditions of the beam. 

Now, if all coefficients, except  d5 , equal to zero, we find: 

 

 

 

 

 

 

 

 

                                                                   

       

                                                                            

 

 

 

 

 

 

 

 

Fig. 4 
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SAINT-VENANT’S PRINCIPLE:   

In applying the equations for axial loading of members, we have assumed up to this 

point that we are sufficiently far enough from the point of load application that the 

distribution of normal stress is uniform. In doing so, we have unknowingly been 

applying Saint Venant’s Principle. This principle states that:  

The stresses and strains in a body at points that are sufficiently remote from points of 

application of load depends only on the static resultant of the loads and not on the 

distribution of loads. 

 

 

  

 

 

 

 

 

 

Fig. 5: Saint-Venant's Principle 

 

Point loads on a surface give rise to a stress concentration near the point of 

application. A stress concentration is an increase in stress along the cross-section that 

may be caused either by such a point load or by another discontinuity, such as a hole  

in the material or an abrupt change in the cross-sectional shape. Since we have 

already shown strain to be proportional to stress, we can get a good idea about the 

magnitude of normal stress by examining the normal strain in a material as it is being 

subjected to some loads. To allow this, we can draw lines parallel to the normal plane 

and see if they remain plane during load application. In each of the following cases, 

witness how near the discontinuity there is a non-uniform distribution in the strain 

(and therefore stress) field, while farther away the distribution is linear (ie. the lines 

remain straight). 

 

 

 

 


