Theory of Elasticity 2D Problems in Polar Coordinate

PROBLEM 1
Given the following stress function
P
¢ =—rBcosl
o

Determine the stress components &, ,0, and 7,,

Solution: The stress components, by definition of ¢, are given as follows
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The various derivatives are as follows:
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Substituting the above values in equations (i), (ii) and (iii), we get

o, = [1)29 cosQ—[é}fr(9c039+25i119)
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Therefore, the stress components are

o = —[Ejisinﬁ
Pl
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T, =0
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Theory of Elasticity 2D Problems in Polar Coordinate

PROBLEM 2

A thick cylinder of inner radius 10ci and outer radius 15cm is subjected to an internal
pressure of 12MPa. Determine the radial and hoop stresses in the cylinder at the inner
and outer surfaces.

Solution: The radial stress in the cylinder is given by
_(pa’—pb") (P —p,\a’t’
o~ B —a’ o)
The hoop stress in the cylinder is given by
2 2 242
o, — | P2 pb” | [Pi=po|ab
b —a’ B*—a’)

As the cylinder is subjected to internal pressure only, the above expressions
reduce to

2 212
_ | _pa P |ab
- [bz—az]_[fyz—az] ”

p.a’ )2 a’b’
and o = 21 5 +( 5 ! 2} >
b"—a b" —a I3

Stresses at inner fuce of the cylinder (i.e., at r =10 cm):

Radial stress = o, = { 12x(0.1)” }_[(0_15)2(0.1)2}[ 12 }

(0.15)* —=(0.1)% (0.1)* (0.15)* —(0.1)*
=96-21.6
or g, = -12 MPa

Hoop stress = 6y = [ 12x(0.1)° }_{ 12 } {(0.15)2((}.1)2]
(0.15)2 = (0.1)? | | (0.15)% = (0.1)? (0.1)2
=96+21.6
or gp=31.2 MPa

Stresses at outerface of the cylinder (i.e., at r =15 cm):

Radial stress = o, = | 12X ©n° | 12 (0.1)’(0.15)*
(0.157 —(0.1)* | |(0.15)" —(0.1) (0.15)

o,=0

HOOPSh‘eSSZD};Z{ 12x(0.1)° }{(0.1)2(0.15)2}{ 12 }
0157 -0D* ] | (019°  J[©019*-0D’

=96+9.6
or oy=19.2 MPa
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Theory of Elasticity

2D Problems in Polar Coordinate

PROBLEM 3

A steel tube, which has an outside diameter of 10cm and inside diameter of Scm, is

subjected to an intermal pressure of 14 MPa and an external pressure of 5.5 MPa.
Calculate the maximum hoop stress in the tube.

Solution: The maximum hoop stress occurs at ¥ = a.

Therefore, Maxinun hoop stress = (Gglmar =

(O-B)max -

Therefore, (Gg)max =

p,a’ _Pob2_+ P, —po || a’h’
b —a’ b* —a’ a’
pr'az _pobz + P =Py B2
b’ —a’ b’ —a’

3 pr.(az +bz)—2p0b2

b —a?

14[(0.05)% + (0.1)% 1= 2% 5.5% (0.1)%

0.1)% —(0.05)2

Or (Og)mer = 8.67 MPa

DISPLACEMENT FOR SYMMETRIC LOADED CASES

By using physical equations, we obtain strain of axisymmetrical

problems as follow:

=A2+ B(1+2logr)+2C

O-r
r
A
o, :_r_2+ B(3+2logr)+2C
Trvo =T =
£ = l(or — Vo
r E 2]
1
9= — (0, — VO,
|
%'ﬂ_ _T} 7
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Theory of Elasticity 2D Problems in Polar Coordinate

N _, :1{(1“1)&2 +(L-3u)B +2(1- u)Blogr +2(1- ﬂ)c}

“_r+1ﬂ:ggzi[_(1+ﬂ)ﬁz +(3- 2B+ 2(1- w)Blogr + 21— y)c}

r roo E r
laur _}_@_!— —0
r o0 or r 'Y

By integration, we obtain displacements: (using above 3 equations)

0, = é{ ()2 20 )Br(logr—l)+(1—3,u)Br+2(1—y)Cr}+f(e),

4Br9_I ()0 1.(r)

7, =0= f,(r)—r dfollgr) - dgf) —j f(6)do=0

where f(6) and f,(r) are respectively arbitrary functions of #and r

{fl(r): Fr

f(6)=Hcos@+Ksing F, H, K are a constants

Finally, we have the displacement solutions for the axisymmetric
problems:

u, = é{ a+ﬂ)A+A 4)Br(logr —1)+ @—&O&AQQ—yXH}+Kcm0+HSm0

V:g-F Fr—Ksing+H cosd
The arbitrary constants 4, B, C, H, F, K can be determined by known
(boundary) conditions. It is noted that the displacements are usually not
symmetrical about the z axis.

For plane strain problem, the solution is obtained by simply replace

Es >
1-p°) 7 (- p)
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Theory of Elasticity 2D Problems in Polar Coordinate

PURE BENDING OF CURVED BAR

Consider a curved bar with a constant
narrow rectangular cross section and a
circular axis in the plane of curvature by M
couples M applied at the ends, as shown in
Figure.

¢$=Alogr+Br2logr+Cr2+D

r

o =A2+ B(1+2logr)+2C
r
A
o, :_r_2+ B(3+2logr)+2C

The B.C. are:
o = 0 forr =gandr =10
b b
-fa codr =0 faaardr=—M
0 = 0  at the boundary

EA§+B(1+2'loga)+20=O
S+ B(L+21logh) +20 = 0

To have the bending couple equal to M, the condition

-/;boa?‘d?"= “ ¢?"d?"—-—'-M

must be fulfilled. We have

b 9% 3¢ EL)

farﬁ ar i f d-*l*“* — [gl2
99 _-0
ar a .. ] .

Substituting in ¢ expression
¢le = M

V.| log-g—l- B(b%log b — a? lbg a) +C0* —a?) =M
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Theory of Elasticity 2D Problems in Polar Coordinate

aM "b 2M
A= attley B=-F O -d)

C = %[bz — a* + 2(b% log b — a? log a)]

where for snnphmty we have put
= (b? — a2)2 — 4a%h? (Iog b)

) 22

oy = W-"{( blog +b210gb+a210g )
M
N

_ ‘a*b?
oo = — —-—log +b“’logb+a2log +b2—a)

Trg — O
The displacement solutions for the axisymmetric problems:

" =é{—(1+ A

Ir+2( u)Br(logr —1)+ (1—3,u)Br+2(l—,u)Cr}+KcosH+Hsin9

v:$+ Fr—-Ksin@+H cosd

In the case of pure bending, the conditions of constraint are:

=0 for3=03,nd'r=ro=a'_2'_b

QJlQ.v
=i

u =10 v =20

}E—I-—- Q,";T”)é + 2(1 — v)Bro log ro — B(1 + v)ro + 2C(1 — v)?‘o]

+ K =0
Fro+ H =0
F=0
From this it follows that F = H = 0, and for the displacement v we’
obtain _ 4%?*8 Ckan
(1 +mwA

—2(1 — w)Br,logr, + B(1 + wr, —2C(1 — wr,

(o)

The arbitrary constants A, B, C can be determined by known (boundary)

conditions from stress equations.
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Theory of Elasticity 2D Problems in Polar Coordinate

Note: 1. v displacement equation consists of two parts:
e Translator displacement —Ksin6 "same for all points in the same
sections"
e Rotation of cross-section by the angle 4B6/E

2. Plane cross sections remain plane in pure bending, i.e.

av/ar = constant as assumed.

3. The final displacements are not axisymmetric, while we started
assuming everything is axisymmetric.

The constant B in the case of symmetrical stress distribution in full ring
was taken as zero. If apportion of the ring between two adjacent cross-
sections is cut out and joined again by welding or other means, a ring
with initial stresses is obtained. If o is the small angle measuring the
portion of the ring that was cut out, the tangential displacement necessary

to bring the end of ring together is: v = ar

1
4Br e
V= 27!""‘:‘5,'— v
_ ol
&r

The bending moment necessary to bring the ends of ring together is:

M= — all (b — a®)? — 4a*b’[log (b/a)]?
8w 2(0% — a?)

The initial stresses in the ring can easily be calculated from this by using

The solution for pure bending moment.

4 1 2h2 '
oy = ~W@(ﬁn—flogé—l—bzlogr+azlogg)

4 22
oo = M( ﬂlg +b210g + a? log - —I-b”—a)
Tf&""O I

%‘JZ‘. ﬁ‘yp bﬁr ZZZ@ (e cﬁo 7257””



Theory of Elasticity 2D Problems in Polar Coordinate

STRESS DISTRIBUTION IN ROTATING CIRCULAR DISK

The stress distribution in rotating circular disks is of great practical
importance. If the thickness of the disk is small in comparison with its
radius, the variation of radial and tangential stresses over the thickness
can be neglected and the problem can be easily solved. If the thickness of
the disk is constant Eq.

00, l dTre n O, = Oy

ar r o0 r

1 do n JTro + ZTrG

roo0 or r

Fr=pw’r F,=0
Where p is the mass per unit volume of the material of the disk and w the
angular velocity of the disk. The equations above can then be written in
the form

o (ray) — a9 + po?r? = 0
This equation is satisfied if we derive the stress components from a stress

function F in the following manner: dF
g ro, = F, traﬂar:ﬂ'f?wz?'g

The strain components in the case of symmetry are, ¢, = %‘f € = :‘T‘
d
= el Pl S '(‘.;_:' i

Substituting for the strain components their expressions in terms of

the stress components,

&=—(o, —vo,)

1
E
9= —(o, — VO,
0 E 0 )

we find that the stress function F should satisfy the following equation:
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Theory of Elasticity 2D Problems in Polar Coordinate

,d°F | _dF

— mx‘ﬂ
rog trg —F+ G4 et =0

It can be verified by substitution that the general solution of this equation
1 3+

IS F=0Cr+ 01;—“~3—sz’-“3
1 3

n’r=G+C1i—_§—‘ —_g--ppw‘r“
1 1 3 o

o‘a=e—cl;;§“' -E IIIlli'f-""”i"'z

The integration constants C and C, are determined from the boundary
conditions.

e For the case of a solid disk we must take C; = 0 since otherwise the

stresses become infinite at the center. The constant C is determined

from the condition at the periphery (r = b) of the disk. If there are

no forces applied there, we have
34y

ooy = € — —2— pu®® = 0
o =3 ;_ © pu(b? - 1%
vy = 3;— szbﬁ _ 1 —ggrm%ﬂ
These stresses are greatest at the center of the disk, where
Tr = g = 3+ Ppw“bﬂ

8

e In the case of existing of small hole of diameter a in the center of
disk. If there are no forces acting on these boundaries, we have
("Jr}r—u — 0, (ﬂ'r}r—b = ()
from which we find that: ¢ = 3-; SIS L IEAR Rl B IR %em%,
3 o2
o = H:—-—“ pord (ﬁﬂ -+ a* — % - -r?)

3 . e 1 -
Tg = -~ : " pwt (b‘ + a* + ErT - Et_:]: ?‘2)

We find the maximum radial stress at r = \/ab, where
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Theory of Elasticity 2D Problems in Polar Coordinate

(ﬂ'r)m. = - g_ == pmz(b - a‘)B

The maximum tangential stress is at the inner boundary, where

(08) max. = '3—1"— pw?® (bz + ;_;,: ﬂg)r
It will be seen that this stress is larger than (o;) max.
When the radius a of the hole approaches zero, the maximum tangential
stress approaches a value twice as great as that for a solid disk; i.e., by
making a small circular hole at the center of a solid rotating disk we

double the maximum stress.

Problem 1: Drive an expression for bending

of curved bar by forces at end.

Problem 2: A thin plate with small hole relative to the plate dimension is
subjected to a normal stress 6, = 6 as shown in Figure below. The stresses
in the neighborhood of the hole are to be determined. Assume area
outside circle of radius R to be unaffected by hole existence i.e.
sufficiently far from the hole we may assume that the stresses are as for a
plate without the hole.

1. Determine an expression for oy, 6, and T,

2. Determine stress at hole face

If the stress function for this case is: @ = (Ar? + Br* + TC—Z + D) cos 26
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Theory of Elasticity 2D Problems in Polar Coordinate
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Problem 3: Consider a semi — finite medium under a normal line load p
(per unit width). Determine an expression for &y, o, and T, inside the
media using the following stress function:

@ =Crfsind

Note: check if the stress function satisfy V4@ = 0

Zv
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