## ELASTIC STRESS-STRAIN RELATIONS

For a linear-elastic isotropic material with all components of stress present:

$$
\begin{array}{rlrl}
\varepsilon_{\mathrm{x}}= & \frac{1}{\mathrm{E}}\left[\sigma_{\mathrm{x}}-v\left(\sigma_{\mathrm{y}}+\sigma_{\mathrm{z}}\right)\right] & & \\
\varepsilon_{\mathrm{y}}= & \frac{1}{\mathrm{E}}\left[\sigma_{\mathrm{y}}-v\left(\sigma_{\mathrm{z}}+\sigma_{\mathrm{x}}\right)\right] & \mathrm{G} & =\frac{\mathrm{E}}{2(1+v)} . \\
\varepsilon_{\mathrm{z}}= & \frac{1}{\mathrm{E}}\left[\sigma_{\mathrm{z}}-v\left(\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}\right)\right] & & \gamma_{\mathrm{xy}}=\frac{2(1+v)}{\mathrm{E}} \tau_{\mathrm{xy}} \\
\gamma_{\mathrm{xy}}=\frac{\tau_{\mathrm{xy}}}{\mathrm{G}} & \gamma_{\mathrm{yz}}=\frac{2(1+v)}{\mathrm{E}} \tau_{\mathrm{yz}} \\
\gamma_{\mathrm{yz}}=\frac{\tau_{\mathrm{yz}}}{\mathrm{G}} & \gamma_{\mathrm{zx}}=\frac{2(1+v)}{\mathrm{E}} \tau_{\mathrm{zx}}
\end{array}
$$

These equations are the generalized Hooke's law. These Equations may be solved to obtain stress components as a function of strains:

$$
\begin{gathered}
\sigma_{\mathrm{x}}=\frac{\mathrm{E}}{(1+v)(1-2 v)}\left[(1-v) \varepsilon_{\mathrm{x}}+v\left(\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}\right)\right] \\
\sigma_{\mathrm{y}}=\frac{\mathrm{E}}{(1+v)(1-2 v)}\left[(1-v) \varepsilon_{\mathrm{y}}+v\left(\varepsilon_{\mathrm{z}}+\varepsilon_{\mathrm{x}}\right)\right] \\
\sigma_{\mathrm{z}}=\frac{\mathrm{E}}{(1+v)(1-2 v)}\left[(1-v) \varepsilon_{\mathrm{z}}+v\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}\right)\right] \\
\tau_{\mathrm{xy}}=\frac{\mathrm{E}}{2(1+v)} \gamma_{\mathrm{xy}}=\mathrm{G} \gamma_{\mathrm{xy}} \\
\tau_{\mathrm{yz}}=\frac{\mathrm{E}}{2(1+v)} \gamma_{\mathrm{yz}}=\mathrm{G} \gamma_{\mathrm{yz}} \\
\tau_{\mathrm{zx}}=\frac{\mathrm{E}}{2(1+v)} \gamma_{\mathrm{zx}}=\mathrm{G} \gamma_{\mathrm{zx}} .
\end{gathered}
$$

For the first three relationships one may find:

$$
\begin{aligned}
& \sigma_{\mathrm{x}}=\frac{\mathrm{E}}{(1+v)}\left[\varepsilon_{\mathrm{x}}+\frac{v}{(1-2 v)}\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}\right)\right] \\
& \sigma_{\mathrm{y}}=\frac{\mathrm{E}}{(1+v)}\left[\varepsilon_{\mathrm{y}}+\frac{v}{(1-2 v)}\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}\right)\right] \\
& \sigma_{\mathrm{z}}=\frac{E}{(1+v)}\left[\varepsilon_{\mathrm{z}}+\frac{v}{(1-2 v)}\left(\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}+\varepsilon_{\mathrm{z}}\right)\right]
\end{aligned}
$$

## PRINCIPAL STRAINS AND PLANES

Strain relations can be as function of principal strain written as follows:

$$
\begin{array}{ll}
\qquad \varepsilon_{1}, \varepsilon_{2}=\frac{\varepsilon_{\mathrm{x}}+\varepsilon_{\mathrm{y}}}{2} \pm \sqrt{\left(\frac{1}{2} \gamma_{\mathrm{xy}}\right)^{2}+\left(\frac{\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}}{2}\right)^{2}} & \\
\gamma_{\max }= \pm 2 \sqrt{\left(\frac{1}{2} \gamma_{\mathrm{xy}}\right)^{2}+\left(\frac{\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}}{2}\right)^{2}} & \\
2 \alpha=\tan ^{-1} \frac{\gamma_{\mathrm{xy}}}{\varepsilon_{\mathrm{x}}-\varepsilon_{\mathrm{y}}} & \varepsilon_{1}=\frac{1}{\mathrm{E}}\left[\sigma_{1}-v\left(\sigma_{2}+\sigma_{3}\right)\right] \\
\text { by virtue of all shear strains and } & \varepsilon_{2}=\frac{1}{\mathrm{E}}\left[\sigma_{2}-v\left(\sigma_{3}+\sigma_{1}\right)\right] \\
\text { shear stresses being equal to zero. } & \varepsilon_{3}=\frac{1}{\mathrm{E}}\left[\sigma_{3}-v\left(\sigma_{1}+\sigma_{2}\right)\right]
\end{array}
$$

## RODS UNDER AXIAL STRESS

$$
\begin{gathered}
\varepsilon_{1}=\frac{1}{\mathrm{E}}\left[\sigma_{1}-v\left(\sigma_{2}+\sigma_{3}\right)\right] \\
\varepsilon_{2}=\frac{1}{\mathrm{E}}\left[\sigma_{2}-v\left(\sigma_{3}+\sigma_{1}\right)\right] \\
\varepsilon_{3}=\frac{1}{\mathrm{E}}\left[\sigma_{3}-v\left(\sigma_{1}+\sigma_{2}\right)\right] \\
\sigma_{1}=\frac{\mathrm{E}}{(1+v)(1-2 v)}\left[(1-v) \varepsilon_{1}+v\left(\varepsilon_{2}+\varepsilon_{3}\right)\right] \\
\sigma_{2}=\frac{\mathrm{E}}{(1+v)(1-2 v)}\left[(1-v) \varepsilon_{2}+v\left(\varepsilon_{3}+\varepsilon_{1}\right)\right] \\
\sigma_{3}=\frac{\mathrm{E}}{(1+v)(1-2 v)}\left[(1-v) \varepsilon_{3}+v\left(\varepsilon_{1}+\varepsilon_{2}\right)\right]
\end{gathered}
$$

As very simple example we may be taken tension of a prismatic bar in the axial direction. Body force are neglected. The eq. of equilibrium satisfied by taking:

$$
\begin{aligned}
& \sigma_{y}=\sigma_{z}=\tau_{x y}=\tau_{y z}=\tau_{x z}=0, \\
& \sigma_{x}=\text { constant }=X
\end{aligned}
$$

We have a uniform distribution of

(a)

(b) tensile stress over cross-section.

## PURE BENDING OF PRISMATIC RODS

Consider a prismatic bar bent in one of its principal planes by two equal and opposite couples $M$. Taking the origin of the coordinates at the centroid of the cross-section and the $x z$-plane in the principal plane of bending, the stress components given by the usual elementary theory of bending are:


The bending moment $M$ is given by the equation:

$$
M=\int \sigma_{v} x d A=\int \frac{E x^{2} d A}{R}=\frac{E I_{v}}{R} \quad \frac{1}{R}=\frac{M}{E I_{v}}
$$

$$
\begin{gathered}
\boldsymbol{\epsilon}_{z}=\frac{\partial w}{\partial z}=\frac{x}{R} \quad w=\frac{x z}{R}+w_{0} \\
\epsilon_{\bar{i}}=\frac{\partial u}{\partial x}=-v \frac{x}{R} \quad \boldsymbol{\epsilon}_{y}=\frac{\partial v}{\partial y}=-\nu \frac{x}{R} \\
u_{0}=-\frac{v x^{2}}{2 R}+f_{1}(y), \quad v_{0}=-\frac{v x y}{R}+f_{s}(x)
\end{gathered}
$$

Integrate the strain-displacement relations and apply boundary conditions to obtain the displacement field.

$$
\begin{array}{r}
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=\frac{\partial v}{\partial z}+\frac{\partial y p}{\partial y}=0 \\
\frac{\partial u}{\partial z}=-\frac{z}{R}-\frac{\partial w_{0}}{\partial x}, \quad \frac{\partial v}{\partial z}=-\frac{\partial w_{0}}{\partial y} \\
u=-\frac{z^{2}}{2 R}-z \frac{\partial w_{0}}{\partial x}+u_{0}, \quad v=-z \frac{\partial w_{0}}{\partial y}+v_{0} \\
-z \frac{\partial^{2} w_{0}}{\partial x^{2}}+\frac{\partial u_{0}}{\partial x}=-\frac{v x}{R}, \quad-z \frac{\partial^{2} w_{0}}{\partial y^{2}}+\frac{\partial v_{0}}{\partial y}=-v \frac{x}{R} \quad \frac{\partial^{2} w_{0}}{\partial x^{2}}=0, \quad \frac{\partial^{2} w_{0}}{\partial y^{2}}=0 \\
2 z \frac{\partial^{2} w_{0}}{\partial x \partial y}-\frac{\partial f_{1}(y)}{\partial y}-\frac{\partial f_{2}(x)}{\partial x}+\frac{v y}{R}=0 \quad \frac{\partial^{2} w_{0}}{\partial x \partial y}=0, \quad \frac{\partial f_{1}(y)}{\partial y}+\frac{\partial f_{2}(x)}{\partial x}-\frac{v y}{R}=0
\end{array}
$$

It's easy to show that all these equations are satisfied by assume $f_{l}(y)$, $f_{2}(x) \& w_{o}$ as following

$$
\begin{aligned}
& w_{0}=m x+n y+p \\
& f_{1}(y)=\frac{\nu y^{2}}{2 R}+\alpha y+\gamma \\
& f_{z}(x)=-\alpha x+\beta \\
& u=-\frac{z^{2}}{2 R}-m z-\frac{\nu x^{3}}{2 R}+\frac{\nu y^{2}}{2 R}+\alpha y+\gamma \\
& v=-n z-\frac{\nu x y}{R}-\alpha x+\beta \\
& w=\frac{x z}{R}+m x+n y+p
\end{aligned}
$$

$$
\text { At } x=y=z=0 \quad u=v=w=0, \quad \frac{\partial u}{\partial z}=\frac{\partial v}{\partial z}=\frac{\partial v}{\partial x}=0
$$

These conditions are satisfied by taking all the arbitrary constants equal to zero. Then

$$
u=-\frac{1}{2 R}\left[z^{2}+\nu\left(x^{2}-y^{2}\right)\right], \quad v=-\frac{\nu x y}{R}, \quad w=\frac{x z}{\bar{R}}
$$

To obtain the deflection curve of the axis of the bar, substitute $x=y=0$ in equations above. Then

$$
u=-\frac{z^{2}}{2 R}=-\frac{M z^{2}}{2 E I_{v}}, \quad y=w=0
$$

Problem 1: Prove that

$$
\begin{aligned}
w^{\prime} & =a+b y-c x \\
w^{\prime} & =d-b x+c x \\
w^{\prime} & =f+c x-c y
\end{aligned}
$$

Problem 2: Drive an expression for displacement for a prismatic bar of length " $l$ " and cross-section " $A$ " hangs under its own weight " $\rho g$ "


