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ELASTIC STRESS-STRAIN RELATIONS 

For a linear-elastic isotropic material with all components of stress 

present: 

 

 

 

 

 

 

 

These equations are the generalized Hooke’s law. These Equations may 

be solved to obtain stress components as a function of strains: 

 

 

 

 

 

 

For the first three relationships one may find: 
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PRINCIPAL STRAINS AND PLANES 

Strain relations can be as function of principal strain written as follows: 

 

 

 

 

by virtue of all shear strains and 

shear stresses being equal to zero. 

 

 

 

RODS UNDER AXIAL STRESS 

As very simple example we may be 

taken tension of a prismatic bar in the 

axial direction. Body force are 

neglected.  The eq. of equilibrium   

satisfied by taking:  

   σy = σz= τxy = τyz = τxz = 0,  

 σx = constant =X 

We have a uniform distribution of 

tensile stress over cross-section. 

 

  

 

 

 

 



Elasticity3D                Theory of Elasticity                                     

 
Asst. Prof. Dr. Sheelan M. Hama 

 

PURE BENDING OF PRISMATIC RODS 

Consider a prismatic bar bent in one of its principal planes by two equal 

and opposite couples M. Taking the origin of the coordinates at the 

centroid of the cross-section and the xz-plane in the principal plane of 

bending, the stress components given by the usual elementary theory of 

bending are:     

 

 

 

 

 

σy = σx= τxy = τyz = τxz = 0               
  

 
 

The bending moment M is given by the equation: 

 

 

  

 

 

 

 

 

Integrate the strain-displacement relations and apply boundary conditions 

to obtain the displacement field. 
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It's easy to show that all these equations are satisfied by assume f1(y), 

f2(x)& wo as following 

  

 

 

 

 

 

 

At x=y=z=0  

These conditions are satisfied by taking all the arbitrary constants equal 

to zero. Then 
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To obtain the deflection curve of the axis of the bar , substitute x=y=0 in 

equations above. Then    

  

   

 

Problem 1: Prove that  

 

 

 

Problem 2: Drive an expression for displacement for a prismatic bar of 

length "l " and cross-section "A" hangs under its own weight "ρg" 

  

 

 

 

 

 

 


