Theory of Elasticity

3D Elasticity

ELASTIC STRESS-STRAIN RELATIONS

For a linear-elastic isotropic material with all components of stress

present:
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These equations are the generalized Hooke’s law. These Equations may
be solved to obtain stress components as a function of strains:
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For the first three relationships one may find:
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PRINCIPAL STRAINS AND PLANES

Strain relations can be as function of principal strain written as follows:
_ & T &y ,\/1 2 (Sx'ay)z
== 4 4 o+
€1. &2 3 + (2 Txy) 3

e = £ 24/ 10 + (55

20 = tan! g = 1[0y - v(oy + o3
& - E
=1rg, -
by virtue of all shear strains and & = glo2 - v(os + o
shear stresses being equal to zero. & = %[03 - v(oy + o)
_ E ) "
o1 I 2v)[{1 vjg + viex + &)
- E . i
G2 DI 2\1)[(1 vjg + v(es + &
a3 E [(1-v)eg + v + &)

RODS UNDER AXIAL STRESS (1 +v)(1-2v)

As very simple example we may be

taken tension of a prismatic bar in the =)
axial direction. Body force are |

neglected. The eq. of equilibrium (a)

satisfied by taking:

Oy = 0,= Tyy = Ty; = Ty, = 0, F T muraa
|
oy = constant =X mﬁ\,_ ____________ - )
We have a uniform distribution of (b)

tensile stress over cross-section.
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PURE BENDING OF PRISMATIC RODS

Consider a prismatic bar bent in one of its principal planes by two equal
and opposite couples M. Taking the origin of the coordinates at the
centroid of the cross-section and the xz-plane in the principal plane of

bending, the stress components given by the usual elementary theory of
bending are:
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The bending moment M is given by the equation:
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Integrate the strain-displacement relations and apply boundary conditions
to obtain the displacement field.
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It's easy to show that all these equations are satisfied by assume fi(y),
f>(X)& w, as following
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These conditions are satisfied by taking all the arbitrary constants equal
to zero. Then
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To obtain the deflection curve of the axis of the bar , substitute x=y=0 in
equations above. Then
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Problem 1: Prove that
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Problem 2: Drive an expression for displacement for a prismatic bar of
length "I " and cross-section "A" hangs under its own weight "pg”
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