
Theory of Plasticity                                                                                

 
Asst. Prof. Dr. Sheelan M. Hama 

 
 
 

 
                  THEORY OF PLASTICITY    

              

INROUDUCTION 

The theory of plasticity is the branch of mechanics that deals with the 

calculation of stresses and strains in a body, made of ductile material, 

permanently deformed by a set of applied forces. The theory is based on 

certain experimental observations on the macroscopic behavior of metals 

in uniform states of combined stresses. The observed results are then 

idealized into a mathematical formulation to describe the behavior of 

metals under complex stresses. Unlike elastic solids, in which the state of 

strain depends only on the final state of stress, the deformation that 

occurs in a plastic solid is determined by the complete history of the 

loading. The plasticity problem is, therefore, essentially incremental in 

nature, the final distortion of the solid being obtained as the sum total of 

the incremental distortions following the strain path. 

Up to now we have concentrated on the elastic analysis of structures. In 

these analyses we used superposition often, knowing that for a linearly 

elastic structure it was valid. However, an elastic analysis does not give 

information about the loads that will actually collapse a structure. An 

indeterminate structure may sustain loads greater than the load that first 

causes a yield to occur at any point in the structure. In fact, a structure 

will stand as long as it is able to find redundancies to yield. It is only 

when a structure has exhausted all of its redundancies will extra load 

causes it to fail. Plastic analysis is the method through which the actual 

failure load of a structure is calculated, and as will be seen, this failure 

load can be significantly greater than the elastic load capacity. 

 In ductile metals, under favorable conditions, plastic deformation can 

continue to a very large extent without failure by fracture. Large plastic 

strains do occur in many metal-working processes, which constitute an 

important area of application of the theory of plasticity. While elastic 
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strains may be neglected in such problems, the continued change in 

geometry of the workpiece must be allowed for in the theoretical 

treatment. Severe plastic strains are produced locally in certain 

mechanical tests such as the hardness test and the notch tensile test. The 

significance of these tests cannot be fully appreciated without a 

knowledge of the extent of the plastic zone and the associated state of 

stress. Situations in which elastic and plastic strains are comparable in 

magnitude arise in a number of important structural problems when the 

loading is continued beyond the elastic limit. Structural designs based on 

the estimation of collapse loads are more economical than elastic designs, 

since the plastic method takes full advantage of the available ductility of 

the material. 

 

 THE STRESS–STRAIN BEHAVIOR 

A uniaxial tensile stress on a ductile material such as mild steel typically 

provides the following graph of stress versus strain: 

 

 

 

 

 

 

 

Fig. a represent behavior up to rupture while Fig. b represent yield range. 

As can be seen, the material can sustain strains far in excess of the strain 

at which yield occurs before failure. This property of the material is 

called its ductility. Ductility is a measure of a material's ability to 

undergo significant plastic deformation before rupture 

Though complex models do exist to accurately reflect the above real 

behavior of the material, the most common, and simplest, model is the 
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idealized stress-strain curve. This is the curve for an ideal elastic-plastic 

material (which doesn’t exist), and the graph is: 

As can be seen, once the yield has been 

reached it is taken that an indefinite 

amount of strain can occur. It must be 

sufficiently ductile for the idealized stress-

strain curve to be valid. 

Let us consider the uniaxial tension test 

with the subsequent unloading for two 

materials: i) pure cooper, and ii) soft-

annealed carbon steel (Steels with higher 

carbon content, and most high-alloy steels, which are 

allowed to air cool after hot working, such as forging 

or hot rolling, are usually hard to machine. Soft 

annealing reduces the hardness and makes the 

material easier to machine) as shown in 

Figure, where the strain and stress are 

defined as follows: 

 

Since the deformed cross-section at tension shrinks, the true stress should 

actually be defined as F/A, where A is the current cross-section area. 

However, at small strains of the order ε < 1% the error is not so grave. 

Looking at the stress-strain curve one can recognize two different types 

of material response in the elastic and elasto-plastic regions. In the purely 

elastic region (within the line OA) no residual strain is observed: the 

specimen assume its original length after the load is removed. For most of 

metals the stress is proportional to the strain so that the Hooke law is 

valid. The purely elastic region ends at point A corresponding to the yield 

stress σy. Beyond this purely elastic region we observe for cooper  

 

i)  a “mild” transition to the elasto-plastic region, while for 

steel  

ii) a sharp yield stress marked by a nearly horizontal segment. If 

the specimen is loaded beyond this yield stress, it begins to 

deform plastically. The specimen shows a residual strain after 
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unloading. The total strain is additively decomposed into the 

elastic and plastic parts 

 

 

 

 

Where = shear stress on the failure plane  

c = apparent cohesion  

=normal stress on the failure plane 

f = angle of internal friction 

 If the stress condition for any other soil sample is represented by a Mohr 

circle that lies below the failure envelope, every plane within the sample 

experiences a shear stress which is smaller than the shear strength of the 

sample. Thus, the point of tangency of the envelope to the Mohr circle at 

failure gives a clue to the determination of the inclination of the failure 

plane.  


