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STRAIN HARDENING 

 

In the one-dimensional (uniaxial 

test) case, a specimen will deform 

up to yield and then generally 

harden, Fig. Also shown in  the 

figure is the perfectly-plastic 

idealization. In the perfectly plastic 

case, once the stress reaches the 

yield point (A), plastic deformation 

ensues, so long as the stress is 

maintained at Y. If the stress is reduced, elastic unloading occurs. In the 

hardening case, once yield occurs, the stress needs to be continually 

increased in order to drive the plastic deformation. If the stress is held 

constant, for example at B, no further plastic deformation will occur; at 

the same time, no elastic unloading will occur. Note that this condition 

cannot occur in the perfectly-plastic case, where there is one of plastic 

deformation or elastic unloading. 

 Strain Hardening is when a metal is strained beyond the yield point. An 

increasing stress is required to produce additional plastic deformation 

and the metal apparently becomes stronger and more difficult to deform. 

These ideas can be extended to the multiaxial case, where the initial yield 

surface will be of the form  

 

 

In the perfectly plastic case, the yield surface remains unchanged.. In the 

more general case, the yield surface may change size, shape and position, 

and can be described by 

                                                                                    ……1           

Here, Ki represents one or more hardening parameters, which change 

during plastic deformation and determine the evolution of the yield 

surface. They may be scalars or higher-order tensors. At first yield, the 

hardening parameters are zero, and f(σij,0) = f0 (σij) . The description of 

how the yield surface changes with plastic deformation, Eqn. 1, is called 

the hardening rule. 
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STRAIN SOFTENING 

The strain-softening of a material is 

the decline of stress at increasing 

strain. Strain-softening diagrams 

are obtained from displacement 

controlled compression tests on 

concrete-like materials. 

 

 

RULES OF PLASTIC FLOW 

Flow plasticity is a solid mechanics theory that is used to describe 

the plastic behavior of materials. Flow plasticity theories are 

characterized by the assumption that a flow rule exists that can be used to 

determine the amount of plastic deformation in the material. 

In flow plasticity theories it is assumed that the total strain in a body can 

be decomposed additively (or multiplicatively) into an elastic part and a 

plastic part. The elastic part of the strain can be computed from a linear 

elastic or hyperelastic constitutive model. However, determination of the 

plastic part of the strain requires a flow rule and a hardening model. 

In metal plasticity, the assumption that the plastic strain increment and 

deviatoric stress tensor have the same principal directions is encapsulated 

in a relation called the flow rule. Rock plasticity theories also use a 

similar concept except that the requirement of pressure-dependence of the 

yield surface requires a relaxation of the above assumption. 
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Instead, it is typically assumed that the plastic strain increment and the 

normal to the pressure-dependent yield surface have the same direction, 

i.e.,  

      
  

  
 

where     >0  is a hardening 

parameter. This form of the flow 

rule is called an associated flow 

rule and the assumption of co-

directionality is called 

the normality condition. The 

function f is also called a plastic 

potential. 

The above flow rule is easily 

justified for perfectly plastic 

deformations for 

which dσ=0 when      , i.e., the yield surface remains constant under 

increasing plastic deformation. This implies that the increment of elastic 

strain is also zero,      , because of Hooke's law. Therefore, 

   
  

  
 0      and              0 

Hence, both the normal to the yield surface and the plastic strain tensor 

are perpendicular to the stress tensor and must have the same direction. 

For a work hardening material, the yield surface can expand with 

increasing stress. We assume Drucker's second stability postulate which 

states that for an infinitesimal stress cycle this plastic work is positive, 

i.e.,        0 

 

The above quantity is equal to zero for purely elastic cycles. Examination 

of the work done over a cycle of plastic loading-unloading can be used to 

justify the validity of the associated flow rule. 

 

 

MOMENT-ROTATION CHARACTERISTICS OF GENERAL CROSS 

SECTION 

We consider an arbitrary cross-section with a vertical plane of symmetry, 

which is also the plane of loading. We consider the cross section subject 

to an increasing bending moment, and assess the stresses at each stage. 

https://en.wikipedia.org/w/index.php?title=Associated_flow_rule&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Associated_flow_rule&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Normality_condition_(plasticity)&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Plastic_potential&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Plastic_potential&action=edit&redlink=1
https://en.wikipedia.org/wiki/Strain_hardening
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Stage 1 – Elastic Behavior 

The applied moment causes stresses over the cross-section that are all less 

than the yield stress of the material. 

 

Stage 2 – Yield Moment 

The applied moment is just sufficient that the yield stress of the material 

is reached at the outermost fiber(s) of the cross-section. All other stresses 

in the cross section are less than the yield stress. This is limit of  

applicability of an elastic analysis and of elastic design.  

 

Stage 3 – Elasto-Plastic Bending 

The moment applied to the cross section has been increased beyond the 

yield moment. Since by the idealized stress-strain curve the material 

cannot sustain a stress greater than yield stress, the fibers at the yield 

stress have progressed inwards towards the center of the beam. Thus over 

the cross section there is an elastic core and a plastic region.  

 

Stage 4 – Plastic Bending 

The applied moment to the cross section is such that all fibers in the cross 

section are at yield stress. This is termed the Plastic Moment Capacity of 

the section since there are no fibers at an elastic stress. Also note that the 
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full plastic moment requires an infinite strain at the neutral axis and so is 

physically impossible to achieve. However, it is closely approximated in 

practice. Any attempt at increasing the moment at this point simply 

results in more rotation, once the cross-section has sufficient ductility. 

Therefore in steel members the cross section classification must 

be plastic and in concrete members the section must be under-reinforced. 

 

Stage 5 – Strain Hardening 

Due to strain hardening of the material, a small amount of extra moment 

can be sustained. 

 

ANALYSIS OF RECTANGULAR CROSS SECTION 

Since we now know that a cross section can sustain more load than just 

the yield moment, we are interested in how much more. In other words 

we want to find the yield moment and plastic moment, and we do so for a 

rectangular section. Taking the stress diagrams from those of the 

moment-rotation curve examined previously, we have: 
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Elastic Moment 

From the diagram: 

But, the force (or the volume of the stress block) is:  

Hence: 

 

 

The term bd2
/ 6 is thus a property of the cross section called the elastic 

section modulus and it is termed S. 

 

 

Plastic Moment 

From the stress diagram: 

And the force is:  

Hence:  

 

 

 

The term bd
2
/ 4 is a property of the cross section called the plastic section 

modulus, termed Z. 

 

Shape Factor 

Thus the ratio of elastic to plastic moment capacity is: 

  
  

 
    

    
 

   
 ⁄

   
 ⁄
     

This ration is termed the shape factor, f, and is a property of a cross 

section alone. For a rectangular cross-section, we have: 
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And so a rectangular section can sustain 50% more moment than the yield 

moment, before a plastic hinge is formed. Therefore the shape factor is a 

good measure of the efficiency of a cross section in bending. Shape 

factors for some other cross sections are: 

 

 

 

 

 

 

 

 MOMENT ROTATION CURVE OF A RECTANGULAR SECTION 

It is of interest to examine the moment-rotation curve as the moment 

approaches the plastic moment capacity of the section. We begin by 

recalling the relationship between strain, ε , and distance from the neutral 

axis, y: 

 

This is a direct consequence of the assumption that plane sections remain 

plane and is independent of any constitutive law (e.g. linear elasticity). 

We next identify the yield strain (that corresponds to the yield stress, σY ) 
as  εY . The curvature that occurs at the yield moment is therefore: 

 

 

 

For moments applied beyond the yield moment, the curvature can be 

found by noting that the yield strain, εY , occurs at a distance from the 

neutral axis of α d/ 2 , giving: 

 

 

Thus, the ratio curvature to yield curvature is: 

 

Also, the ratio of elasto-plastic moment to yield moment is: 
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And so finally we have: 

 

 

Plotting this gives: 

 

 

  

 

 

 

 

 

 

 

 

 

There are some important observations to be made from this graph: 

• To reach the plastic moment capacity of the section requires large 

curvatures. Thus the section must be ductile. 

• The full cross-section plasticity associated with the plastic moment 

capacity of a section can only be reached at infinite curvature (or infinite 
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strain). Since this is impossible, we realize that the full plastic moment 

capacity is unobtainable. 

 

To show that the idea of the plastic moment capacity of section is still 

useful, we examine this further. Firstly we note that strain hardening in 

mild steel begins to occur at a strain of about 10 εY . At this strain, the 

corresponding moment ratio is: 

 

 

Since this is about 99.7% of the plastic moment capacity, we see that the 

plastic moment capacity of a section is a good approximation of the 

section’s capacity. These calculations are based on a ductility ration of 

10. This is about the level of ductility a section requires to be of use in 

any plastic collapse analysis. Lastly, for other cross-section shapes we 

have the moment-curvature relations shown in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


