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Introduction 

 

Mechanical design is a complex undertaking, requiring many skills. 

Extensive relationships need to be subdivided into a series of simple tasks. 

The complexity of the subject requires a sequence in which ideas are 

introduced and iterated. To design is either to formulate a plan for the 

satisfaction of a specified need or to solve a problem. If the plan results in 

the creation of something having a physical reality, then the product must 

be functional, safe, reliable, competitive, usable, manufacturable, and 

marketable. 

The complete design process, from start to finish, is often outlined 

as in Fig.(1).The process begins with an identification of a need and a 

decision to do something about it. After many iterations, the process ends 

with the presentation of the plans for satisfying the need. Depending on 

the nature of the design task, several design phases may be repeated 

throughout the life of the product, from inception to termination. 
 

 

Figure (1) 

The phases in design, acknowledging the many feedbacks and 

iterations 
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1. Load and Stress Analysis 

 

The ability to quantify the stress condition at a critical location in a 

machine element is an important skill of the engineer. Why? 

Whether the member fails or not is assessed by comparing the 

(damaging) stress at a critical location with the corresponding 

material strength at this location. 

 

1-1. Mohr’s Circle for Plane Stress 

(a) (b) 
 

Figure (1-1) 

 
Suppose the dx dy dz element of Fig. (1–1a) is cut by an oblique 

plane with a normal n at an arbitrary angle ϕ counterclockwise from 

the x axis as shown in Fig. (1–1b). This section is concerned with the 

stresses σ and τ that act upon this oblique plane. By summing the 

forces caused by all the stress components to zero, the stresses σ and 

τ are found to be 

 

    1-1 

 
 

1-2 
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Equations (1–1) and (1–2) are called the plane-stress transformation 

equations. Differentiating Eq. (1–1) with respect to ϕ and setting the 

result equal to zero gives 

 
1-3 

 
Equation (1–3) defines two particular values for the angle 2ϕp, one 

of which defines the maximum normal stress σ1 and the other, the 

minimum normal stress σ2. These two stresses are called the 

principal stresses, and their corresponding directions, the principal 

directions. The angle between the principal directions is 90°. It is 

important to note that Eq. (1–3) can be written in the form 
 

                         a 

Comparing this with Eq. (1–2), we see that τ = 0, meaning that the 

surfaces containing principal stresses have zero shear stresses. In a 
similar manner, we differentiate Eq. (1–2), set the result equal to 

zero, and obtain 

                                      1-4 

Equation (1–4) defines the two values of 2ϕs at which the shear 

stress τ reaches an extreme value. The angle between the surfaces 

containing the maximum shear stresses is 90°. Equation (1–4) can 

also be written as 

                          b 

Substituting this into Eq. (1–1) yields 

                                               1-5 

Equation (1–5) tells us that the two surfaces containing the 

maximum shear stresses also contain equal normal stresses of 
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(σx + σy)/2. Comparing Eqs. (1–3) and (1–4), we see that tan 2ϕs is 

the negative reciprocal of tan 2ϕp. This means that 2ϕs and 2ϕp are 

angles 90° apart, and thus the angles between the surfaces containing 

the maximum shear stresses and the surfaces containing the principal 

stresses are ±45◦. Formulas for the two principal stresses can be 

obtained by substituting the angle 2ϕp from Eq. (1–3) in Eq. (1–1). 

The result is 

 

 
1-6 

 

 
In a similar manner the two extreme-value shear stresses are found 

to be 

 

 
1-7 

 

 
Your particular attention is called to the fact that an extreme value of 

the shear stress may not be the same as the actual maximum value. 

It is important to note that the equations given to this point are 

quite sufficient for performing any plane stress transformation. 

However, extreme care must be exercised when applying them. For 

example, say you are attempting to determine the principal state of 

stress for a  problem  where  σx  =  14  MPa,  σy  =  −10  MPa,  and 

τxy = −16 MPa. Equation (1–3) yields ϕp = −26.57
◦
 and 63.43

°
 to 

locate  the  principal  stress  surfaces,  whereas,  Eq.  (1–6)  gives    

σ1 = 22 MPa and σ2 = −18 MPa for the principal stresses. If all we 

wanted was the principal stresses, we would be finished. However, 

what if we wanted to draw the element containing the principal 

stresses properly oriented relative to the x, y axes? Well, we have 

two values of ϕp and two values for the principal stresses. How do 

we know which value of ϕp corresponds to which value of the 

principal stress? To clear this up we would need to substitute one of 

the values of ϕp into Eq. (1–1) to determine the normal stress 

corresponding to that angle. A graphical method for expressing the 

relations developed in this section, called Mohr’s circle diagram, is 

a very effective means of visualizing the stress state at a point and 
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keeping track of the directions of the various components associated 

with plane stress. Equations (1–1) and (1–2) can be shown to be a set 

of parametric equations for σ and τ, where the parameter is 2ϕ. The 

relationship between σ and τ is that of a circle plotted in the σ, τ 

plane,    where    the    center    of    the    circle    is    located    at    

C = (σ, τ ) = [(σx + σy)/2, 0] and has a radius of 
 

𝑅 = √(
𝜎𝑥−𝜎𝑦

2
)

2
+ (𝜏𝑥𝑦)

2
. 

A problem arises in the sign of the shear stress. The 

transformation equations are based on a positive ϕ being 

counterclockwise, as shown in Fig. (1–2). If a positive τ were 

plotted above the σ axis, points would rotate clockwise on the circle 

2ϕ in the opposite direction of rotation on the element. It would be 

convenient if the rotations were in the same direction. One could 

solve the problem easily by plotting positive τ below the axis. 

However, the classical approach to Mohr’s circle uses a different 

convention for the shear stress. 

 

1-2. Mohr’s Circle Shear Convention 

 

This convention is followed in drawing Mohr’s circle: 

• Shear stresses tending to rotate the element clockwise (cw) are 

plotted above the σ axis. 

• Shear stresses tending to rotate the element counterclockwise (ccw) 

are plotted below the σ axis. 

For example, consider the right face of the element in Fig. (1–1a). 

By Mohr’s circle convention the shear stress shown is plotted below 

the σ axis because it tends to rotate the element counterclockwise. 

The shear stress on the top face of the element is plotted above the   

σ axis because it tends to rotate the element clockwise. In Fig. (1–2) 

we create a coordinate system with normal stresses plotted along the 

abscissa and shear stresses plotted as the ordinates. On the abscissa, 

tensile (positive) normal stresses are plotted to the right of the origin 

O and compressive (negative) normal stresses to the left. On the 

ordinate, clockwise (cw) shear stresses are plotted up; 

counterclockwise (ccw) shear stresses are plotted down. 

Using the stress state of Fig. (1–1a), we plot Mohr’s circle, 

Fig. (1–2), by first looking at the right surface of the element 

containing σx to establish the sign of σx and the cw or ccw direction 

of the shear stress. The right face is called the x face where ϕ = 0
◦
. If 
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xy 

 ) 

 
 

σx is positive and the shear stress τxy is ccw as shown in Fig. (1–1a), 

we can establish point A with coordinates (σx , 
ccw ) in Fig. (1–2). 

 

 
 

 

Figure (1-2) 

Mohr’s circle diagram. 
 

Next, we look at the top y face, where ϕ = 90◦, which contains σy , 

and repeat the process to obtain point B with coordinates (σy , 
ccw 

xy 

as shown in Fig. (1–2). The two states of stress for the element are 
∆ϕ = 90

◦
 from each other on the element so they will be 2∆ϕ = 180

◦
 

from each other on Mohr’s circle. Points A and B are the same 

vertical distance from the σ axis. Thus, AB must be on the diameter 

of the circle, and the center of the circle C is where AB intersects the 

σ axis. With points A and B on the circle, and center C, the complete 

circle can then be drawn. Note that the extended ends of line AB are 

labeled x and y as references to the normal to the surfaces for which 

points  A  and  B  represent  the  stresses.   The entire Mohr’s circle 
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represents the state of stress at a single point in a structure. Each 

point on the circle represents the stress state for a specific surface 

intersecting the point in the structure. Each pair of points on the 

circle 180
°
 apart represent the state of stress on an element whose 

surfaces are 90
°
 apart. Once the circle is drawn, the states of stress 

can be visualized for various surfaces intersecting the point being 

analyzed. For example, the principal stresses σ1 and σ2 are points D 

and E, respectively, and their values obviously agree with Eq. (1–6). 

We also see that the shear stresses are zero on the surfaces 

containing σ1 and σ2. The two extreme-value shear stresses, one 

clockwise and one counterclockwise, occur at F and G with 

magnitudes equal to the radius of the circle. The surfaces at F and G 

each also contain normal stresses of (σx + σy)/2 as noted earlier in 

Eq. (1–5). Finally, the state of stress on an arbitrary surface located 

at an angle ϕ counterclockwise from the x face is point H. 

At one time, Mohr’s circle was used graphically where it was 

drawn to scale very accurately and values were measured by using a 

scale and protractor. Here, we are strictly using Mohr’s circle as a 

visualization aid and will use a semi-graphical approach, calculating 

values from the properties of the circle. This is illustrated by the 

following example. 

 

EXAMPLE 1–1 

 

A stress element has σx = 80 MPa and τxy = 50 MPa cw, as shown in 

Fig. (1–3a). 

(a) Using Mohr’s circle, find the principal stresses and 

directions, and show these on a stress element correctly aligned with 

respect to the xy coordinates. Draw another stress element to show τ1 

and τ2, find the corresponding normal stresses, and label the drawing 

completely. 

(b) Repeat part a using the transformation equations only. 

 

Solution 

 

(a) In the semi-graphical approach used here, we first make an 

approximate freehand sketch of Mohr’s circle and then use the 

geometry of the figure to obtain the desired information. 

Draw the σ and τ axes first (Fig. 1–3b) and from the x face 

locate σx = 80 MPa along the σ axis. On the x face of the element, we 

see that the shear stress is 50 MPa in the cw direction. Thus, for 
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the x face, this establishes point A (80, 50cw) MPa. Corresponding 

to the y face, the stress is σ = 0 and τ = 50 MPa in the ccw direction. 

This locates point B (0, 50ccw) MPa. The line AB forms the 

diameter of the required circle, which can now be drawn. The 

intersection of the circle with the σ axis defines σ1 and σ2 as shown. 

Now, noting the triangle ACD, indicate on the sketch the length of 

the legs AD and CD as 50 and 40 MPa, respectively. The length of 

the hypotenuse AC is 

                   Ans. 

and this should be labeled on the sketch too. Since intersection C is 

40 MPa from the origin, the principal stresses are now found to be 
 

σ1 = 40 + 64 = 104 MPa and σ2 = 40 − 64 = −24 MPa 

 

The angle 2ϕ from the x axis cw to σ1 is 

Ans. 

 

 

 
Ans. 

 

 

To draw the principal stress element (Fig. 1–3c), sketch the x and y 

axes parallel to the original axes. The angle ϕp on the stress element 

must be measured in the same direction as is the angle 2ϕp on the 

Mohr circle. Thus, from x measure 25.7° (half of 51.3°) clockwise to 

locate the σ1 axis. The σ2 axis is 90° from the σ1 axis and the stress 

element can now be completed and labeled as shown. Note that there 

are no shear stresses on this element. The two maximum shear 

stresses occur at points E and F in Fig. (1–3b). The two normal 

stresses corresponding to these shear stresses are each 40 MPa, as 

indicated. Point E is 38.7° ccw from point A on Mohr’s circle. 

Therefore, in Fig. (1–3d), draw a stress element oriented 19.3° (half 

of 38.7°) ccw from x. The element should then be labeled with 

magnitudes and directions as shown. In constructing these stress 

elements it is important to indicate the x and y directions of the 

original reference system. This completes the link between the 

original machine element and the orientation of its principal stresses. 
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Figure (1-3) 

All stresses in MPa. 

 
 

(b) The transformation equations are programmable. From 

Eq. (1–3), 
 
 

 

From Eq. (1–2), for the first angle ϕp = −25.7◦, 
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which  confirms  that  104.03  MPa  is  a  principal  stress.  From  

Eq. (1–1), for ϕp = 64.3◦, 
 

 

Substituting ϕp = 64.3
◦
 into Eq. (3–9) again yields τ = 0, indicating 

that −24.03 MPa is also a principal stress. Once the principal stresses 

are calculated they can be ordered such that σ1 ≥ σ2. Thus, 

σ1 = 104.03 MPa and σ2 = −24.03 MPa. Ans. 
 

Since for σ1 = 104.03 MPa, ϕp = −25.7
◦
, and since ϕ is defined 

positive ccw in the transformation equations, we rotate clockwise 

25.7° for the surface containing σ1. We see in Fig. (1–3c) that this 

totally agrees with the semigraphical method. 

To determine τ1 and τ2, we first use Eq. (1–4) to calculate ϕs : 
 

For ϕs = 19.3
◦
, Eqs. (1–1) and (1–2) yield 

 

Ans. 

Remember that Eqs. (1–1) and (1–2) are coordinate transformation 

equations. Imagine that we are rotating the x, y axes 19.3° 

counterclockwise and y will now point up and to the left. So a 

negative shear stress on the rotated x face will point down and to the 

right as shown in Fig. (1–3d). Thus again, results agree with the 

semigraphical method. For ϕs = 109.3
◦
, Eqs. (1–1) and (1–2) give     

σ = 40.0 MPa and τ = +64.0 MPa. 

Using the same logic for the coordinate transformation we find that 

results again agree with Fig. (1–3d). 
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Homework 

 

For each of the plane stress states listed below, draw a Mohr’s circle 

diagram properly labeled, find the principal normal and shear 

stresses, and determine the angle from the x axis to σ1. Draw stress 

elements as in Fig. (1–3c and d) and label all details. 

 

(1) σx = 12, σy = 6, τxy = 4 cw 

(2) σx = 16, σy = 9, τxy = 5 ccw 

(3) σx = 10, σy = 24, τxy = 6 ccw 

(4) σx = 9, σy = 19, τxy = 8 cw 
(5) σx = −4, σy = 12, τxy = 7 ccw 

(6) σx = 6, σy = −5, τxy = 8 ccw 

(7) σx = −8, σy = 7, τxy = 6 cw 
(8) σx = 9, σy = −6, τxy = 3 cw 

(9) σx = 20, σy = −10, τxy = 8 cw 

(10) σx = 30, σy = −10, τxy = 10 ccw 
(11) σx = −10, σy = 18, τxy = 9 cw 

(12) σx = −12, σy = 22, τxy = 12 cw 

 

1-3. General Three-Dimensional Stress 

 

As in the case of plane stress, a particular orientation of a stress 

element occurs in space for which all shear-stress components are 

zero. When an element has this particular orientation, the normals to 

the faces are mutually orthogonal and correspond to the principal 

directions, and the normal stresses associated with these faces are  

the principal stresses. Since there are three faces, there are three 

principal directions and three principal stresses σ1, σ2, and σ3. For 

plane stress, the stress-free surface contains the third principal stress 

which is zero. The process in finding the three principal stresses 

from the six stress components σx , σy , σz , τxy , τyz, and τzx , involves 

finding the roots of the cubic equation 
 

 
 

1-8 
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Figure (1-4) 

Mohr’s circles for three-dimensional stress 

 
 

In plotting Mohr’s circles for three-dimensional stress, the 

principal normal stresses are ordered so that σ1 ≥ σ2 ≥ σ3. Then 

the result appears as in Fig. (1–4a). The stress coordinates σ, τ 

for any arbitrarily located plane will always lie on the 

boundaries or within the shaded area. Figure (1–4a) also shows 

the three principal shear stresses τ1/2, τ2/3, and τ1/3. Each of these 

occurs on the two planes, one of which is shown in Fig. (3–

12b). The figure shows that the principal shear stresses are 

given by the equations 
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Of course, τmax = τ1/3 when the normal principal stresses are 

ordered (σ1 > σ2 > σ3), so always order your principal stresses. 

Do this in any computer code you generate and you’ll always 

generate τmax. 
 


