
 

3.1 Characterizing Fluctuating Stresses 

 

Fluctuating stresses in machinery often take the form of a sinusoidal 

pattern because of the nature of some rotating machinery. However, 

other patterns, some quite irregular, do occur. It has been found that 

in periodic patterns exhibiting a single maximum and a single 

minimum of force, the shape of the wave is not important, but the 

peaks on both the high side (maximum) and the low side (minimum) 

are important. Thus Fmax and Fmin in a cycle of force can be used to 

characterize the force pattern. It is also true that ranging above and 

below some baseline can be equally effective in characterizing the 

force pattern. If the largest force is Fmax and the smallest force is 

Fmin, then a steady component and an alternating component can be 

constructed as follows: 
 

F  
Fmax  Fmin 

m
 2 

Fa 

where Fm is the midrange steady component of force, and Fa is the 

amplitude of the alternating component of force. 

Fmax  Fmin 

 



 

 
 

Figure (3–6) 

Some stress-time relations: (a) fluctuating stress with high- frequency ripple; 

(b and c) non-sinusoidal fluctuating stress; (d) sinusoidal fluctuating stress; (e) 

repeated stress; (f ) completely reversed sinusoidal stress. 

 
 

Figure (3–6) illustrates some of the various stress-time traces 

that occur. The components of stress, some of which are shown in 

Fig. (3–6d), are 

 

σmin = minimum stress σm = midrange component 

σmax = maximum stress σr = range of stress 
σa  = amplitude component σs = static or steady stress 

 

The steady, or static, stress is not the same as the midrange stress; in 

fact, it may have any value between σmin and σmax. The steady stress 

exists because of a fixed load or preload applied to the part, and it is 

usually independent of the varying portion of the load. A helical 



 
 

compression spring, for example, is always loaded into a space 

shorter than the free length of the spring. The stress created by this 

initial compression is called the steady, or static, component of the 

stress. It is not the same as the midrange stress. We shall have 

occasion to apply the subscripts of these components to shear 

stresses as well as normal stresses. 

The following relations are evident from Fig. (3–6): 
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In addition to Eq. (3–14), the stress ratio 
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and the amplitude 

ratio 
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are also defined and used in connection with fluctuating stresses. 

 

Equations (3–14) utilize symbols σa and σm as the stress 

components at the location under scrutiny. This means, in the 

absence of a notch, σa and σm are equal to the nominal stresses σao 

and σmo induced by loads Fa and Fm, respectively; in the presence of 

a notch they are (Kf σao) and (Kf σmo), respectively, as long as the 

material remains without plastic strain. In other words, the fatigue 

stress concentration factor Kf is applied to both components. 

3.2 Fatigue Failure Criteria for Fluctuating Stress 

 

Five criteria of failure are diagrammed in Fig. (3–7): the 

Soderberg, the modified Goodman, the Gerber, the ASME-elliptic, 

and yielding. The diagram shows that only the Soderberg criterion 

guards against any yielding, but is biased low. 

Considering the modified Goodman line as a criterion, point A 

represents a limiting point with an alternating strength Sa and 

midrange strength Sm. The slope of the load line shown is defined as 

r = Sa/Sm. 
 

 

Figure (3–7) 

Fatigue diagram showing various criteria of failure. For each criterion, points on or 

“above” the respective line indicate failure. Some point A on the Goodman line, for 

example, gives the strength Sm as the limiting value of σm corresponding to the 



strength Sa, which, paired with σm, is the limiting value of σa. 

 

 

The line equations for every criterion are :     

Soderberg line is:                                                                                                                                                                         3-17 

 

modified Goodman :                                                     3-18 

 

The Gerber failure criterion is:                                                  3-19 

 

ASME-elliptic is :                                                                                           3-20 

 
 

The Langer first-cycle-yielding criterion is used in connection with the fatigue 

curve: 
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The stresses nσa and nσm can replace Sa and Sm, where n is the design 

factor or factor of safety. Then, the last Eqs. become 
 

Soderberg:                                                                                                    3-22 

 

mod-Goodman :                      3-23 

 

 

Gerber :                                                           3-24 

 

 

 

ASME-elliptic:                                               3-25 

 

 

 

Langer static yield:                                                           3-26 

  

 

The Gerber and ASME-elliptic are emphasized for fatigue failure 

criterion and the Langer for first-cycle yielding. Conservative designers often 

use the modified Goodman criterion. 

The failure criteria are used in conjunction with a load line,     r = 

Sa/Sm = σa/σm . Principal intersections are tabulated in Tables (3–5 to 3–7). 

Formal expressions for fatigue factor of safety are given in the lower panel of 

Tables (3–5 to 3–7). The first row of each table corresponds to the fatigue 

criterion, the second row is the static Langer criterion, and the third row 

corresponds to the intersection of the static and fatigue criteria. The first column 

gives the intersecting equations and the second column the intersection 

coordinates. 

There are two ways to proceed with a typical analysis. One method is 

to assume  that  fatigue  occurs  first  and  use  one  of  Eqs. (3–22) to (3–25) to 

determine n or size, depending on the task. Most often fatigue is the governing 

failure mode. Then follow with a static check. If static failure governs then the 

analysis is repeated using Eq. (3–6). Alternatively, one could use the tables. 

Determine the load line and establish which criterion the load line intersects first 

and use the corresponding equations in the tables. Some examples will help 

solidify the ideas just discussed. 



 
 

Table (3–5) 
Amplitude and steady coordinates of strength and important intersections in first quadrant for 

modified Goodman and Langer failure criteria 

 

 

Table (3–6) 
Amplitude and steady coordinates of strength and important intersections in first quadrant for 

Gerber and Langer failure criteria 

 



 
 

Table (3–7) 
Amplitude and steady coordinates of strength and important intersections in first quadrant for 

ASME-elliptic and Langer failure criteria 

 

 

 

EXAMPLE 3–7 

 

A 1.5-in-diameter bar has been machined from an AISI 1050 cold- 

drawn bar. This part is to withstand a fluctuating tensile load varying 

from 0 to 16 kip. Because of the ends, and the fillet radius, a fatigue 

stress-concentration factor Kf is 1.85 for 10
6
 or larger life. Find Sa 

and Sm and the factor of safety guarding against fatigue and first- 

cycle yielding, using (a) the Gerber fatigue line and (b) the ASME- 

elliptic fatigue line. 

 

Solution 

 

From Table (3–4), Sut = 100 kpsi and Sy = 84 kpsi. 

Fa = Fm = 8 kip. 

ka = 2.7(100)
−0.265

 = 0.797 

kb = 1 (axial loading) 

kc = 0.85 

kd = ke = kf = 1 



Se = 0.797(1)0.85(1)(1)(1)0.5(100) = 33.9 kpsi 



 
 

The nominal axial stress components σao and σmo are 
 

Applying Kf to both components σao and σmo constitutes a 

prescription of no notch yielding: 

 

σa = Kf σao = 1.85(4.53) = 8.38 kpsi = σm 

 

(a) Let us calculate the factors of safety first. From the bottom panel 

from Table (3–6) the factor of safety for fatigue is 

From Eq. (3–26) the factor of safety guarding against first-cycle 

yield is 
 

 

Thus, we see that fatigue will occur first and the factor of safety is 

(3.68). This can be seen in Fig. (3–8) where the load line intersects 

the Gerber fatigue curve first at point B. If the plots are created to 

true scale it would be seen that nf = OB/OA. 

 

From the first panel of Table (3–6), r = σa/σm = 1, 
 
 

 

 

As a check on the previous result, 

 

nf = OB/OA = Sa/σa = Sm/σm = 30.7/8.38 = 3.66 and we see total 

agreement. 



 

 

Figure (3–8) 
Principal points A, B, C, and D on the designer’s diagram drawn for 

Gerber, Langer, and load line 

 

We could have detected that fatigue failure would occur first 

without drawing Fig. (3–8) by calculating rcrit . From the third row 

third column panel of Table (3–6), the intersection point between 

fatigue and first-cycle yield is 

Sa = Sy − Sm = 84 − 64 = 20 kpsi 

The critical slope is thus 

 
 

which is less than the actual load line of r = 1. This indicates that 

fatigue occurs before first-cycle-yield. 

 
 

(b) Repeating the same procedure for the ASME-elliptic line, for 

fatigue 



 

 

Figure (3–9) 
Principal points A, B, C, and D on the designer’s diagram drawn for 

ASME-elliptic, Langer, and load line 

 

Again, this is less than ny = 5.01 and fatigue is predicted to occur 

first. From the first row second column panel of Table (3–7), with    

r = 1, we obtain the coordinates Sa and Sm of point B in Fig. (3–9) as 
 

 

The fatigue factor of safety, nf = Sa/σa = 31.4/8.38 = 3.75 

 

As before, rcrit. From the third row second column panel of 

Table (3–7), 
 

 

 
which again is less than r = 1, verifying that fatigue occurs first with 

nf = 3.75. 



 
 

The Gerber and the ASME-elliptic fatigue failure criteria are 

very close to each other and are used interchangeably. The 

ANSI/ASME Standard B106.1M–1985 uses ASME-elliptic for 

shafting. 

 

For many brittle materials, the first quadrant fatigue failure criteria 

follows a concave upward Smith-Dolan locus represented by 
 

 

 
or as a design equation, 
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For a radial load line of slope r, we substitute Sa/r for Sm in Eq. (3–

27) and solve for Sa , obtaining 

                  3-29 

The  most  likely  domain  of  designer  use  is  in  the  range  from 
−Sut ≤ σm ≤ Sut . The locus in the first quadrant is Goodman, Smith- 

Dolan, or something in between. The portion of the second quadrant 

that  is  used  is  represented  by  a  straight  line  between  the points 

−Sut , Sut and 0, Se, which has the equation 

 

          3-30 

EXAMPLE 3–8 

 

A grade 30 gray cast iron (Sut = 31 kpsi, Suc = 109 kpsi, kakb Se = 14 

kpsi, and kc for axial loading is 0.9) is subjected to a load F applied 

to a 1 by 3/8 -in cross-section link with a 1/4 -in-diameter hole 

drilled in the center as depicted in Fig. (3–10a). The surfaces are 

machined. In the neighborhood of the hole, what is the factor of 

safety guarding against failure under the following conditions: 



 
 

(a) The load F = 1000 lbf tensile, steady. 

(b) The load is 1000 lbf repeatedly applied. 
(c) The load fluctuates between (−1000 lbf and 300 lbf) without 

column action. 

Use the Smith-Dolan fatigue locus. 
 

Solution  

Se = (kakb Se )kc = 14(0.9) = 12.6 kpsi. 

Kt = 2.45 (HW) 

The notch sensitivity (q) for cast iron is 0.2 

Kf = 1 + q(Kt − 1) = 1 + 0.2(2.45 − 1) = 1.29 
 

 

(a) 

 

then, the factor of safety guarding against failure 
 

 

(b)  

 

From Eq. (3-29) 
 

 

 

(c) 



 
 



 

 

 

From Eq. (3-30), Sa = Se + (Se/Sut − 1)Sm and Sm = Sa/r . It follows 

that 

 

 

 

Figure (3–10b) shows the portion of the designer’s fatigue diagram 

that was constructed. 
 
 

 

Figure (3–10) 
The grade 30 cast-iron part in axial fatigue with (a) its geometry displayed and 

(b) its designer’s fatigue diagram 

 

 

 

 

 

3.3 Torsional Fatigue Strength under Fluctuating Stresses 

 

Use the same equations as apply for σm ≥ 0, except replace σm and 

σa with τm and τa , use kc = 0.59 for Se, replace Sut with Ssu = 0.67Sut , 

and replace Sy with Ssy = 0.577Sy . 



 
 

3.4 Combinations of Loading Modes 

 

It may be helpful to think of fatigue problems as being in three 

categories: 

 

• Completely reversing simple loads 

• Fluctuating simple loads 

• Combinations of loading modes 

 

For the last one, calculate von Mises stresses for alternating and 

midrange stress states, σ′a and σ′m . When determining Se , do not use 

kc nor divide by Kf or Kfs . Apply Kf and/or Kfs directly to each 

specific alternating and midrange stress. If axial stress is present 

divide the alternating axial stress by kc = 0.85. For the special case of 

combined bending, torsional shear, and axial stresses 
 

 

Then apply stresses to fatigue criterion. 

 
 

EXAMPLE 3–9 

 

A rotating shaft is made of (42×4 mm) AISI 1018 cold-drawn steel 

tubing and has a 6-mm-diameter hole drilled transversely through it. 

Estimate the factor of safety guarding against fatigue and static 

failures using the Gerber and Langer failure criteria for the following 

loading conditions: 

(a) The shaft is subjected  to  a  completely  reversed  torque  of  

120 N·m in phase with a completely reversed bending moment of 

150 N·m. 

(b) The shaft is subjected to a pulsating torque fluctuating from 20 to 

160 N·m and a steady bending moment of 150 N·m. 

 

Solution 

 

Here we follow the procedure of estimating the strengths and then 

the stresses, followed by relating the two. 



 
 

From Table (3–4): Sut = 440 MPa and Sy = 370 MPa. 

 

Se   = 0.5(440) = 220 MPa. 

ka = 4.51(440)
−0.265

 = 0.899 

The remaining Marin factors are all unity, so the modified endurance 

strength Se is 

Se = 0.899(0.833)220 = 165 MPa 
 

(a) 

Kt = 2.366 for bending; and Kts = 1.75 for torsion (HW) 
 

Thus, for bending, 
 

 

and for torsion 
 

 

q = 0.78 for bending and q = 0.96 for torsion (HW) 
 

Kf = 1 + q(Kt − 1) = 1 + 0.78(2.366 − 1) = 2.07 

Kfs = 1 + 0.96(1.75 − 1) = 1.72 
 

The alternating bending stress is now found to be 
 

and the alternating torsional stress is 
 



xya 

 
 

The midrange von Mises component σ′m is zero. The alternating 

component σ′a is given by: 

 

 

 

Since Se = Sa , the fatigue factor of safety nf is 
 

The first-cycle yield factor of safety is 
 

This means that there is no localized yielding; so, the threat is from 

fatigue. See Fig. (3–11). 
 

 

Figure (3–11) 
Designer’s fatigue diagram 



 
 

(b) This part asks us to find the factors of safety when the alternating 

component is due to pulsating torsion, and a steady component is 

due to both torsion and bending. We have 

 

Ta = (160 − 20)/2 = 70 N·m and Tm = (160 + 20)/2 = 90 N·m 
 

The corresponding amplitude and steady-stress components are 
 

The steady bending stress component σxm is 
 

The von Mises components σ′a and σ′m are 

 

σ′a = [3(16.3)
2
]

1/2
 = 28.2 MPa 

σ′m = [(93.82)
2
 + 3(21)

2
]

1/2
 = 100.6 MPa 

 

From Table (3–6), the fatigue factor of safety is 

 

From the same table, with r = σ′a /σ′m = 28.2/100.6 = 0.28, the 

strengths can be shown to be Sa = 85.5 MPa and Sm = 305 MPa. See 

the plot in Fig. (3–11). 

The first-cycle yield factor of safety ny is 
 
 

 
There is no notch yielding. The likelihood of failure may first come 

from first-cycle yielding at the notch. See the plot in Fig. (3–11). 



 
 

Homework 

 

(1) A 0.25-in drill rod was heat-treated and ground. Estimate the 

endurance  strength  if  the  rod  is  used  in  rotating  bending,  if   

Sut = 242.6 kpsi. (Ans./ Se = 85.7 kpsi) 

 

(2) Estimate 
Se for the following materials: 

(a) AISI 1020 CD steel.   (Ans./ 34 kpsi) 

(b) AISI 1080 HR steel.   (Ans./ 56 kpsi) 

(c) 2024 T3 aluminum. (Ans./ no endurance limit) 

(d) AISI 4340 steel heat-treated to 

a tensile strength of 250 kpsi. (Ans./ 100 kpsi) 

 

(3) Estimate the endurance strength of a 32-mm-diameter rod of 

AISI 1035 steel having a machined finish and heat-treated to a 

tensile strength of 710 MPa. (Ans./ Se = 241 kpsi) 

 

(4) Two steels are being considered for manufacture of as-forged 

connecting rods. One is AISI 4340 Cr-Mo-Ni steel capable of being 

heat-treated to a tensile strength of 260 kpsi. The other is a plain 

carbon steel AISI 1040 with an attainable Sut of 113 kpsi. If each rod 

is to have a size giving an equivalent diameter de of 0.75-in, is there 

any advantage to use the alloy steel for fatigue application? 
(Ans./ Se = 14.3 and 18.6 kpsi. Not only is AISI 1040 steel a contender, it has a superior endurance strength. Can you 

see why?) 

 

(5) A rectangular bar is cut from an AISI 1018 cold-drawn steel flat. 

The bar is 60 mm wide by 10 mm thick and has a 12-mm hole 

drilled through the center as depicted in Fig. (1-8). The bar is 

concentrically loaded in push-pull fatigue by axial forces Fa, 

uniformly distributed across the width. Using a design factor of 1.8, 

estimate the largest force Fa that can be applied ignoring column 

action. (Ans./ Largest force amplitude is 20.1 kN) 

 

(6) A bar of steel has the minimum properties Se = 276 MPa, 

Sy = 413 MPa, and Sut = 551 MPa. The bar is subjected to a steady 

torsional stress of 103 MPa and an alternating bending stress of    

172 MPa. Find the factor of safety guarding against a static failure, 

and the factor of safety guarding against a fatigue failure. For the 

fatigue analysis use: (a) Modified Goodman criterion. (b) Gerber 

criterion. (c) ASME-elliptic criterion. (Ans./ ny = 1.67, nf = 1.06, 1.31, 1.32) 



 
 

(7) Repeat question (6) but with a steady torsional stress of 138 MPa 

and an alternating bending stress of 69 MPa. (Ans./ ny = 1.66, nf = 1.46, 1.73, 1.59) 

 

(8) Repeat question (6) but with a steady torsional stress of 103 MPa, 

an alternating torsional stress of 69 MPa, and an alternating bending 

stress of 83 MPa. (Ans./ ny = 1.34, nf = 1.18, 1.47, 1.47) 

 

(9) Repeat question (6) but with an alternating torsional stress of  

207 MPa. (Ans./ ny = 1.15, nf = 0.77, 0.77, 0.77) 

 

(10) Repeat question (6) but with an alternating torsional stress of 

103 MPa and a steady bending stress of 103 MPa.(Ans./ ny = 2, nf = 1.2, 1.44, 1.44) 

 

(11) The cold-drawn AISI 1018 steel bar shown in the figure is 

subjected to an axial load fluctuating between 800 and 3000 lbf. 

Estimate the factors of safety ny and nf using (a) a Gerber fatigue 

failure criterion, and (b) an ASME-elliptic fatigue failure criterion. 
 

(Ans./ nf = 2.17, 2.28) 

(12) Repeat question (11), with the load fluctuating between −800 

and 3000 lbf. Assume no buckling. (Ans./ nf = 1.6, 1.62) 

 

(13) Repeat question (11), with the load fluctuating between 800 

and −3000 lbf. Assume no buckling. (Ans./ nf = 1.67, 1.67) 

 

(14) The figure shows a formed round-wire cantilever spring 

(Sut = 188.1 kpsi) subjected to a varying force. It is apparent from the 



 
 

mounting details that there is no stress concentration. A visual 

inspection of the springs indicates that the surface finish 

corresponds closely to a hot-rolled finish. Estimate the factors 

of safety ny and nf using (a) Modified Goodman criterion, and 

(b) Gerber criterion. 
(Ans./ nf = 0.955, 1.2) 

 

(15) The figure shows the free-body diagram of a connecting-

link portion having stress concentration at three sections. The 

dimensions are r = 0.25 in, d = 0.75 in, h = 0.5 in, w1 = 3.75 in, 

and w2 = 2.5 in. 
 

 
The forces F fluctuate between a tension of 4 kip and a 

compression of 16 kip. Neglect column action and find the least 

factor of safety if the material is cold-drawn AISI 1018 steel. 
(Ans./ Fillet: ny = 4.22, nf = 1.61; Hole: ny = 5.06, nf = 1.61; then: n = 1.61) 

 

(16) In the figure shown, shaft A, made of AISI 1010 hot-rolled 

steel, is welded to a fixed support and is subjected to loading by 

equal and opposite forces F via shaft B. A fatigue stress 

concentration Kfs of 

1.6 is induced by the 3-mm fillet. The length of shaft A from the 

fixed support to the connection at shaft B is 1 m. The load F 

cycles from 0.5 to 2 kN. 

(a) For shaft A, find the factor of safety for infinite life using 

the modified Goodman fatigue failure criterion. 

(b) Repeat part (a) using the Gerber fatigue failure criterion. 



(Ans./ nf = 1.36, 1.7) 

 


