
 

4.1 Miscellaneous Shaft Components 

 

 Setscrews 
 

Unlike bolts and cap screws, which depend on tension to develop a 

clamping force, the setscrew depends on compression to develop the 

clamping force. The resistance to axial motion of the collar or hub 

relative to the shaft is called holding power. This holding power, 

which is really a force resistance, is due to frictional resistance of the 

contacting portions of the collar and shaft as well as any slight 

penetration of the setscrew into the shaft. 

 

Figure (4–6) shows the point types available with socket 

setscrews. These are also manufactured with screwdriver slots and 

with square heads. 
 

 

 

 

 

 

 

Figure (4–6) 

Socket setscrews: (a) flat point; (b) cup point; (c) oval point; 

(d) cone point; (e) half-dog point. 

 

 
 

Typical factors of safety are 1.5 to 2.0 for static loads and 4 to 8 for 

various dynamic loads. Setscrews should have a length of about half 

of the shaft diameter. 



 
 

 Keys and Pins 
 

Keys and pins are used on shafts to secure rotating elements, such as 

gears, pulleys, or other wheels. Keys are used to enable the 

transmission of torque from the shaft to the shaft-supported element. 

Pins are used for axial positioning and for the transfer of torque or 

thrust or both. 

Figure (4–7) shows a variety of keys and pins. Pins are useful 

when the principal loading is shear and when both torsion and thrust 

are present. Taper pins are sized according to the diameter at the 

large end. The diameter at the small end is 
 

d = D − 0.0208L 

where 
 

d = diameter at small end, in., D = diameter at large end, in., and 

L = length, in. 

 

 

 

 

 

Figure (4–7) 

(a) Square key; (b) round key; (c and d) round pins; (e) taper pin; 
(f) split tubular spring pin. The pins in parts (e) and (f) are shown 

longer than necessary, to illustrate the chamfer on the ends, but their 

lengths should be kept smaller than the hub diameters to prevent 

injuries due to projections on rotating parts. 



 
 

For less important applications, a dowel pin or a drive pin can be 

used. A large variety of these are listed in manufacturers’ catalogs. 

The square key, shown in Fig. (4–7a), is also available in rectangular 

sizes. The shaft diameter determines standard sizes for width, height, 

and key depth. The designer chooses an appropriate key length to 

carry the torsional load. Failure of the key can be by direct shear, or 

by bearing stress. The maximum length of a key is limited by the 

hub length of the attached element, and should generally not exceed 

about 1.5 times the shaft diameter to avoid excessive twisting with 

the angular deflection of the shaft. Multiple keys may be used as 

necessary to carry greater loads, typically oriented at 90
o
 from one 

another. Excessive safety factors should be avoided in key design, 

since it is desirable in an overload situation for the key to fail, rather 

than more costly components. 

Stock key material is typically made from low carbon cold- 
rolled steel, and is manufactured such that its dimensions never 

exceed the nominal dimension. This allows standard cutter sizes to 

be used for the keyseats. A setscrew is sometimes used along with a 

key to hold the hub axially, and to minimize rotational backlash 

when the shaft rotates in both directions. 

The gib-head key, in Fig. (4–8a), is tapered so that, when 

firmly driven, it acts to prevent relative axial motion. This also gives 

the advantage that the hub position can be adjusted for the best axial 

location. The head makes removal possible without access to the 

other end, but the projection may be hazardous. 
 

Figure (4–8) 

(a) Gib-head key; (b) Woodruff key. 



 
 

The Woodruff key, shown in Fig. (4–8b), is of general 

usefulness, especially when a wheel is to be positioned against a 

shaft shoulder, since the keyslot need not be machined into the 

shoulder stress-concentration region. The use of the Woodruff key 

also yields better concentricity after assembly of the wheel and shaft. 

This is especially important at high speeds, as, for example, with a 

turbine wheel and shaft. Woodruff keys are particularly useful in 

smaller shafts where their deeper penetration helps prevent key 

rolling. 
 

 

 Retaining Rings 
 

A retaining ring is frequently used instead of a shaft shoulder or a 

sleeve to axially position a component on a shaft or in a housing 

bore. As shown in Fig. (4–9), a groove is cut in the shaft or bore to 

receive the spring retainer. For sizes, dimensions, and axial load 

ratings, the manufacturers’ catalogs should be consulted. 
 

 
Figure (4–9) 

Typical uses for retaining rings. (a) External ring and (b) its 

application; (c) internal ring and (d) its application. 

 
 

For the rings to seat nicely in the bottom of the groove, and support 

axial loads against the sides of the groove, the radius in the bottom 

of the groove must be reasonably sharp, typically about one-tenth of 

the groove width. This causes comparatively high values for stress 

concentration factors, around 5 for bending and axial, and 3 for 

torsion. Care should be taken in using retaining rings, particularly in 

locations with high bending stresses. 



 
 

1. Screws, Fasteners, and the Design of Nonpermanent Joints 

 

The helical-thread screw was undoubtably an extremely important 

mechanical invention. It is the basis of power screws, which change 

angular  motion  to  linear  motion  to transmit  power  or  to develop 
large forces (presses, jacks, etc.), and threaded fasteners, an 

important element in nonpermanent joints. 

 
 

5.1 Thread Standards and Definitions 
 

The terminology of screw threads, illustrated in Fig. (5–1), is 

explained as follows: 

The pitch is the distance between adjacent thread forms 

measured parallel to the thread axis. The pitch in U.S. units is the 

reciprocal of the number of thread forms per inch N. 

The major diameter (d) is the largest diameter of a screw 

thread. 

The minor (or root) diameter (dr) is the smallest diameter of a 

screw thread. 

The pitch diameter (dp) is a theoretical diameter between the 

major and minor diameters. 

The lead (l), not shown, is the distance the nut moves parallel 

to the screw axis when the nut is given one turn. For a single thread, 

as in Fig. (5–1), the lead is the same as the pitch. 

A multiple-threaded product is one having two or more 

threads cut beside each other (imagine two or more strings wound 

side by side around a pencil). Standardized products such as screws, 

bolts, and nuts all have single threads; a double-threaded screw has a 

lead equal to twice the pitch, a triple-threaded screw has a lead  

equal to 3 times the pitch, and so on. 

All threads are made according to the right-hand rule unless 

otherwise noted. 

The American National (Unified) thread standard has been 

approved in Great Britain for use on all standard threaded products. 

The thread angle is 60
o
 and the crests of the thread may be either flat 

or rounded. 

Figure (5–2) shows the thread geometry of the metric M and 

MJ profiles. The M profile replaces the inch class and is the basic 

ISO 68 profile with 60
o
 symmetric threads. The MJ profile has a 



rounded fillet at the root of the external thread and a larger minor 



 
 

diameter of both the internal and external threads. This profile is 

especially useful where high fatigue strength is required. 

 

 
Figure (5–1) 

Terminology of screw threads. Sharp vee threads shown for clarity; 

the crests and roots are actually flattened or rounded 

during the forming operation 
 

 

 

 

 
 

Figure (5–2) 

Basic profile for metric M and MJ threads; d = major diameter 

dr = minor diameter, dp = pitch diameter, p = pitch, H = √3/2 p 



 
 

Two major Unified thread series are in common use: UN and 

UNR. The difference between these is simply that a root radius must 

be used in the UNR series. Because of reduced thread stress- 

concentration factors, UNR series threads have improved fatigue 

strengths. Unified threads are specified by stating the nominal major 

diameter, the number of threads per inch, and the thread series, for 

example, 5/8 in-18 UNRF or 0.625 in-18 UNRF. 

Metric threads are specified by writing the diameter and pitch 

in millimeters, in that order. Thus, M12 × 1.75 is a thread having a 

nominal major diameter of 12 mm and a pitch of 1.75 mm. Note that 

the letter M, which precedes the diameter, is the clue to the metric 

designation. 

Square and Acme threads, shown in Fig. (5–3a and b), 

respectively, are used on screws when power is to be transmitted. 
 

 
 

 

Figure (5–3) 

(a) Square thread; (b) Acme thread. 
 

 

Modifications are frequently made to both Acme and square 

threads. For instance, the square thread is sometimes modified by 

cutting the space between the teeth so as to have an included thread 

angle of 10 to 15
o
. This is not difficult, since these threads are 

usually cut with a single-point tool anyhow; the modification retains 

most of the high efficiency inherent in square threads and makes the 

cutting simpler. Acme threads are sometimes modified to a stub 

form by making the teeth shorter. This results in a larger minor 

diameter and a somewhat stronger screw. 



 
 

5.2 The Mechanics of Power Screws 
 

A power screw is a device used in machinery to change angular 

motion into linear motion, and, usually, to transmit power. Familiar 

applications include the lead screws of lathes, and the screws for 

vises, presses, and jacks. 

An application of power 

screws to a power-driven jack is 

shown in Fig. (5–4). 

In Fig. (5–5) a square- 

threaded power screw with single 

thread having a mean diameter 

dm, a pitch p, a lead angle λ, and a 

helix  angle   ψ  is  loaded  by  the 

axial compressive force F. We 

wish to find an expression for the 

torque required to raise this load, 

and another expression for the 

torque required to lower the load. 

First, imagine that a single 

thread of the screw is unrolled or 

developed (Fig. 5–6) for exactly a 

single turn. Then one edge of the 

thread will form the hypotenuse 

of a right triangle whose base is 

the circumference of the mean- 

thread-diameter circle and whose 

height is the lead. The angle λ, in 

 

 

 

 

 

 

 

 

 
 

Figure (5–4) 
The Joyce worm-gear screw jack. 

Figs. (5–5) and (5–6), is the lead angle of the thread. We represent 

the summation of all the unit axial forces acting upon the normal 
thread area by F. To raise the load, a force PR acts to the right     

(Fig. 5–6a), and to lower the load, PL acts to the left (Fig. 5–6b). The 

friction force is the product of the coefficient of friction f with the 

normal force N, and acts to oppose the motion. The system is in 

equilibrium under the action of these forces, and hence, for raising 

the load, we have 
 

∑FH = PR − N sin λ − f N cos λ = 0 a 

∑FV = F + f N sin λ − N cos λ = 0 

 

In a similar manner, for lowering the load, we have 



 

  

Figure (5–6) 
Figure (5–5) Force diagrams: (a) lifting the 

Portion of a power screw load; (b) lowering the load 

 

 
 

∑FH = −PL − N sin λ + f N cos λ = 0 b 

∑FV = F − f N sin λ − N cos λ = 0 

 

Since we are not interested in the normal force N, we eliminate it 

from each of these sets of equations and solve the result for P. For 

raising the load, this gives 
 

PR = F(sin λ + f cos λ) / (cos λ − f sin λ) c 

and for lowering the load, 
 

PL = F( f cos λ − sin λ) / (cos λ + f sin λ) d 
 

Next, divide the numerator and the denominator of these equations 

by cos λ and use the relation tan λ = l/πdm (Fig. 5–6). We then have, 

respectively, 

PR = F [(l/πdm) + f ] / [1 − ( f l/πdm)] e 

PL = F [ f − (l/πdm)] / [1 + ( f l/πdm)] f 

 

Finally, noting that the torque is the product of the force P and the 

mean radius dm/2, for raising the load we can write: 

 

5-1 
 





 

where TR is the torque required for two purposes: to overcome thread 

friction and to raise the load. 
 
 

The torque required to lower the load, 

 

5-2 

 
 

 

 

This is the torque required to overcome a part of the friction in 

lowering the load. It may turn out, in specific instances where the 

lead is large or the friction is low, that the load will lower itself by 

causing the screw to spin without any external effort. In such cases, 

the torque TL from Eq. (5–2) will be negative or zero. When a 

positive torque is obtained from this equation, the screw is said to be 

self-locking. Thus the condition for self-locking is 
 

π f dm > l 

 

Dividing both sides of this inequality by πdm. Recognizing that 

l/πdm = tan λ, we get 

 

f  > tan λ 5-3 

This relation states that self-locking is obtained whenever the 

coefficient of thread friction is equal to or greater than the tangent of 

the thread lead angle. An expression for efficiency is also useful in 

the evaluation of power screws. If we let f = 0 in Eq. 

obtain 
(5–1), we 

To = Fl / 2π 

which, since thread friction has been eliminated, is the torque 

required only to raise the load. The efficiency is therefore 

 

 

The preceding equations have been 

developed for square threads where the normal thread loads are 

parallel to the axis of the screw. In the case of Acme or other 

threads, the normal thread load is inclined to the axis because of the 

thread angle 2α and the lead angle λ. Since lead angles are small, this 



inclination can be neglected and only the effect of the thread angle 

(Fig. 5–7a) considered. The effect of the angle α is to increase the 

frictional force by the wedging action of the threads. Therefore the 

frictional terms in Eq. (5–1) must be 
 
 

divided by cos α. For raising the load, or for tightening a screw or 

bolt, this yields 

 

5-4 

 

In using Eq. (5–5), remember that it is an approximation because the 

effect of the lead angle has been neglected. 
 

Figure (5–7) 
(a) Normal thread force is increased because of angle α; 

(b) thrust collar has frictional diameter dc 

 

 

For power screws, the Acme thread is not as efficient as the square 

thread, because of the additional friction due to the wedging action, 

but it is often preferred because it is easier to machine and permits 

the use of a split nut, which can be adjusted to take up for wear. 

Usually a third component of torque must be applied in 

power-screw applications. When the screw is loaded axially, a thrust 

or collar bearing must be employed between the rotating and 

stationary members in order to carry the axial component. Figure (5–

7b) shows a typical thrust collar in which the load is assumed to be 

concentrated at the mean collar diameter dc. If fc is the coefficient of 

collar friction, the torque required is 

                                  

5-5 

 
 



 
 

For large collars, the torque should probably be computed in a 

manner similar to that employed for disk clutches. 

Nominal body stresses in power screws can be related to 

thread parameters as follows. The maximum nominal shear stress τ 

in torsion of the screw body can be expressed as 

 

 

5-6 
 
 

The axial stress σ in the body of the screw due to load F is 
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Nominal thread stresses in power screws 

can be related to thread parameters as follows. The bearing stress in 

Fig. (5–8), σB, is 
 

                                              

 

 

5-8

 

where nt is the number of engaged threads. 
 

 

 

 

 
 



Figure (5–8) 
Geometry of square thread useful in finding bending and 

transverse shear stresses at the thread root 

 
 

The bending stress at the root of the thread σb is found from: 

 

 

 

5-9 

 

The transverse shear stress τ at the center of the root of the thread 

due to load F is 
       

5-10 

 

and at the top of the root it is zero. The von Mises stress σ′ at the top 

of  the  root  “plane”  is  found  by  first  identifying  the  orthogonal 

normal stresses and the shear stresses. From the coordinate system of 

Fig. (5–8), we note 

 
 

 

 

 

 
The screw-thread form is complicated from an analysis viewpoint. 

The tensile-stress area At , comes from experiment [see tables (5–1) 

& 5–2)] . A power screw lifting a load is in compression and its 

thread pitch is shortened by elastic deformation. Its engaging nut is 

in tension and its thread pitch is lengthened. The engaged threads 

cannot share the load equally. Some experiments show that the first 

engaged thread carries 0.38 of the load, the second 0.25, the third 

0.18, and the seventh is free of load. In estimating thread stresses by 

the equations above, substituting 0.38F for F and setting nt to 1 will 

give the largest level of stresses in the thread-nut combination. 
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EXAMPLE 5–1 

 

A square-thread power screw has a major diameter of 32 mm and a 

pitch of 4 mm with double threads, and it is to be used in an 

application similar to that in Fig. (5–4). The given data 
f = fc = 0.08, dc = 40 mm, and F = 6.4 kN per screw. 

include 

(a) Find the thread depth, thread width, pitch diameter, minor 

diameter, and lead. 

(b) Find the torque required to raise and lower the load. 

(c) Find the efficiency during lifting the load. 

(d) Find the body stresses, torsional and compressive. 

(e) Find the bearing stress. 

(f) Find the thread stresses bending at the root, shear at the root, and 

von Mises stress and maximum shear stress at the same location. 

 

Solution 

 

(a) From Fig. (5–3a) the thread depth and width are the same and 

equal to half the pitch, or 2 mm. Also 
 

dm = d − p/2 = 32 − 4/2 = 30 mm 

 

dr = d − p = 32 − 4 = 28 mm 

 

l = np = 2(4) = 8 mm 

 

 

(b) Using Eqs. (5–1) and (5–6), the torque required to turn the screw 

against the load is 
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Using Eqs. (5–2) and (5–6), we find the load-lowering torque is 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The minus sign in the first term indicates that the screw alone is not 

self-locking and would rotate under the action of the load except for 

the fact that the collar friction is present and must be overcome, too. 

Thus the torque required to rotate the screw “with” the load is less 

than is necessary to overcome collar friction alone. 
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(c) The overall efficiency in raising the load is 

 

 

 

 

(d) The body shear stress τ due to torsional moment TR at the outside of the screw 

body is 

 

 

 

 

 

The axial nominal normal stress σ is 
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(e) The bearing stress σB is, with one   thread carrying 0.38F:  

 

 

 

 

(f) The thread-root bending stress σb with one thread carrying 0.38F is: 

 

 

 

 

The transverse shear at the extreme of the root cross section due 

to bending is zero. However, there is a circumferential shear 

stress at the extreme of the root cross section of the thread as 

shown in part 

(d) of 6.07 MPa. The three-dimensional stresses, after Fig. (5–

8), noting the y coordinate is into the page, are 

 
 

σx = 41.5 MPa τxy = 0 

σy = 0 τyz = 6.07 MPa 

σz = −10.39 MPa τzx = 0 

 

 

σ′ =(1/√2){(41.5−0)
2
+[0−(−10.39)]

2
+(−10.39−41.5)

2
+6(6.07)

2
}

1/2
 

= 48.7 MPa 

 

Alternatively, you can determine the principal stresses and then 

the von Mises stress noting that there are no shear stresses on 

the x face. This means that σx is a principal stress. The 

remaining principal stresses are: 
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