
 

1. Mechanical Springs Mechanical Springs 
 

A spring is defined as an elastic body, whose function is to distort 

when loaded and to recover its original shape when the load is 

removed. In general, springs may be classified as wire springs, flat 

springs, or special-shaped springs, and there are variations within 

these divisions. Wire springs include helical springs of round or 

square wire, made to resist and deflect under tensile, compressive, or 

torsional loads. Flat springs include cantilever and elliptical types, 

wound motor- or clock-type power springs, and flat spring washers, 

usually called Belleville springs. 

 
 

7.1 Stresses in Helical Springs 

 

Figure (7–1a) shows a round-wire helical compression spring loaded 

by the axial force F. We designate D as the mean coil diameter and  

d as the wire diameter. Now imagine that the spring is cut at some 

point (Fig. 7–1b), then, at the inside fiber of the spring, 
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at the inside fiber of the spring. Substitution of τmax = τ , T = F D/2, r 

= d/2, J = πd
4
 /32, and A = πd

2
 /4 gives 

 
 

 

 

Figure (7–1) 
(a) Axially loaded helical spring; (b) free-body diagram showing that the wire is 



subjected to a direct shear and a torsional shear. 



 
 

 

 

 

Now we define the spring index 
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which is a measure of coil curvature. With this 

relation, Eq. (7–1) can be rearranged to give 
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where Ks is a shear-stress correction factor and is defined by the 

equation 
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For most springs, C ranges from about 6 to 12. Equation (7–3) is 

quite general and applies for both static and dynamic loads. 

The use of square or rectangular wire is not recommended for 

springs unless space limitations make it necessary. Springs of special 

wire shapes are not made in large quantities, unlike those of round 

wire; they have not had the benefit of refining development and 

hence may not be as strong as springs made from round wire. When 

space is severely limited, the use of nested round-wire springs 

should always be considered. They may have an economical 

advantage over the special-section springs, as well as a strength 

advantage. 

 
 

7.2 The Curvature Effect 

 

Equation (7–1) is based on the wire being straight. However, the 

curvature of the wire increases the stress on the inside of the spring 

but decreases it only slightly on the outside. This curvature stress is 

primarily important in fatigue because the loads are lower and there 

is no opportunity for localized yielding. For static loading, these 

stresses can normally be neglected because of strain-strengthening 

with the first application of load. 

Unfortunately, it is necessary to find the curvature factor in a 

roundabout way. The reason for this is that the published equations 

also include the effect of the direct shear stress. Suppose Ks in Eq. 

(7–3) is replaced by another K factor, which corrects for both 

curvature and direct shear. Then this factor is given by either of the 

equations 
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The first of these is called the Wahl factor, and the second, the 

Bergsträsser factor. Since the results of these two equations differ 

by less than 1 percent, Eq. (7–6) is preferred. The curvature 

correction factor can now be obtained by canceling out the effect of 

the direct shear. Thus, using Eq. (7–6) with Eq. (7–4), the curvature 

correction factor is found to be 
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Now, KS , KB or KW , and KC are simply stress correction factors 

applied multiplicatively to Tr/J at the critical location to estimate a 

particular stress. There is no stress concentration factor. We will use 

τ = KB(8FD)/(πd
3
) to predict the largest shear stress. 

 

7.3 Deflection of Helical Springs 

 

The deflection-force relations are quite easily obtained by using Castigliano’s 

theorem. The total strain energy for a helical spring is composed of a torsional 

component and a shear component. The strain energy is 

 

 

Substituting T = F.D/2, l = π DN, J = πd
4
 /32, and A = πd

2
 /4 results in 

 

 

 

 

where N = Na = number of active coils. Then using Castigliano’s theorem, to find 

total deflection y gives: 

 
 

 



 

 

 

 

Since C = D/d, the previous Equation can be rearranged to yield 
 

 

 

 

 

 

The spring rate, also called the scale of the spring, is k = F/y, and so 
 

 

 

 

 

 

 

 

 

7.4 Compression Springs 

 

The four types of ends generally used for compression springs are 

illustrated in Fig. (7–2). A spring with plain ends has a 

noninterrupted helicoid; the ends are the same as if a long spring had 

been cut into sections. A spring with plain ends that are squared or 

closed is obtained by deforming the ends to a zero-degree helix 

angle. Springs should always be both squared and ground for 

important applications, because a better transfer of the load is 

obtained. 
 

 

Figure (7–2) 
Types of ends for compression springs: (a) both ends plain; 

(b) both ends squared; (c) both ends squared and ground; 

(d) both ends plain and ground. 

 



 
Table (7–1) shows how the type of end used affects the 

number of coils and the spring length. Note that the digits 0, 1, 2, 

and 3 appearing in Table (7–1) are often used without question. 

Some of these need closer scrutiny as they may not be integers.This 

depends on how a springmaker forms the ends. Forys pointed out 

that squared and ground ends give a solid length Ls of 

 

Ls = (Nt − a) d 

 

where a varies, with an average of 0.75, so the entry dNt in Table (7–

1) may be overstated. The way to check these variations is to take 

springs from a particular springmaker, close them solid, and measure 

the solid height. Another way is to look at the spring and count the 

wire diameters in the solid stack. 

Set removal or presetting is a process used in the manufacture 

of compression springs to induce useful residual stresses. It is done 

by making the spring longer than needed and then compressing it to 



 
 

its solid height. This operation sets the spring to the required final 

free length and, since the torsional yield strength has been exceeded, 

induces residual stresses opposite in direction to those induced in 

service. Springs to be preset should be designed so that 10 to 30 

percent of the initial free length is removed during the operation. If 

the stress at the solid height is greater than 1.3 times the torsional 

yield strength, distortion may occur. If this stress is much less than 

1.1 times, it is difficult to control the resulting free length. 
Set removal increases the strength of the spring and so is 

especially useful when the spring is used for energy-storage 

purposes. However, set removal should not be used when springs are 

subject to fatigue. 

 

Table (7–1) 
Formulas for the Dimensional Characteristics of Compression-Springs. 

(Na = Number of Active Coils) 

 

 

 
 

 

 

7.5 Spring Materials 

 

Springs are manufactured either by hot- or cold-working processes, 

depending upon the size of the material, the spring index, and the 

properties desired. In general, prehardened wire should not be used 

if D/d < 4 or if d > 1/4 in. Winding of the spring induces residual 

stresses through bending, but these are normal to the direction of the 

torsional working stresses in a coil spring. Quite frequently in spring 

manufacture, they are relieved, after winding, by a mild thermal 

treatment. 

A great variety of spring materials are available to the 

designer, including plain carbon steels, alloy steels, and corrosion- 

resisting steels, as well as nonferrous materials such as phosphor 

bronze, spring brass, beryllium copper, and various nickel alloys. 

Type of Spring Ends 
Term 

Plain 
Plain and 

Ground 

Squared or 

Closed 

Squared and 

Ground 



 
 

Spring materials may be compared by an examination of their 

tensile strengths; these vary so much with wire size that they cannot 

be specified until the wire size is known. The material and its 

processing also, of course, have an effect on tensile strength. It turns 

out that the graph of tensile strength versus wire diameter is almost a 

straight line for some materials when plotted on log-log paper. 

Writing the equation of this line as 
 

 

 

  

furnishes a good means of estimating minimum tensile strengths 

when the intercept A and the slope m of the line are known. Values 

of these constants have been worked out from recent data and are 

given for strengths in units of kpsi and MPa in Table (7–3). In      

Eq. (7–10) when d is measured in millimeters, then A is in MPa · 

mm
m
 and when d is measured in inches, then A is in kpsi · in

m
. 

A very rough estimate of the torsional yield strength can be 

obtained by assuming that the  tensile  yield  strength  is  between  

60 and 90 percent of the tensile strength. Then the distortion-energy 

theory can be  employed  to  obtain  the  torsional  yield  strength  

(Sys = 0.577Sy). This approach results in the range 
 

0.35Sut ≤ Ssy ≤ 0.52Sut for steels 7-11 

For wires listed in Table (7–4), the maximum allowable shear stress 

in a spring can be seen in column 3. Music wire and hard-drawn 

steel spring wire have a low end of range Ssy = 0.45Sut . Valve spring 

wire, Cr-Va, Cr-Si, and other (not shown) hardened and tempered 

carbon and low-alloy steel wires as a group have Ssy ≥ 0.50Sut. Many 

nonferrous materials (not shown) as a group have Ssy ≥ 0.35Sut. In 

view of this,  Joerres  uses  the  maximum  allowable  torsional 

stress for static application shown in Table (7–5). For specific 

materials for which you have torsional yield information use this 

table as a guide. Joerres provides  set-removal  information  in  

Table (7–5), that Ssy ≥ 0.65Sut increases strength through cold work, 

but at the cost of an additional operation by the springmaker. 

Sometimes the additional operation can be done by the manufacturer 

during assembly. Some correlations with  carbon  steel  springs  

show that the  tensile  yield  strength  of  spring  wire  in  torsion  

can be estimated from 0.75Sut. The corresponding estimate of the 

yield strength in shear based on distortion energy theory is 



Ssy = 0.577(0.75)Sut = 0.433Sut = 0.45Sut. Samónov discusses the 

problem of allowable stress and shows that 

Ssy = τall = 0.56Sut 7-12 

for high-tensile spring steels, which is close to the value given by 

Joerres for hardened alloy steels. He points out that this value of 

allowable stress is specified by Draft Standard 2089 of the German 

Federal Republic when Eq. (7–3) is used without stress-correction 

factor. 

Table (7–2) 
High-Carbon and Alloy Spring Steels 

 

 

 

 

 
Music wire, 

0.80–0.95C 

 
 
 
 
 

UNS G10850 

AISI 1085 

ASTM A228-51 

 
 
 

 
This is the best, toughest, and most widely used of all 

spring materials for small springs. It has the highest 

tensile strength and can withstand higher stresses under 

repeated loading than any other spring material. 

Available in diameters 0.12 to 3 mm (0.005 to 0.125 in). 

Do not use above 120°C (250°F) or at subzero 

temperatures. 

 
 
 

Oil-tempered 

wire, 0.60–

0.70C 

 
 

UNS G10650 

AISI 1065 

ASTM 229-41 

This general-purpose spring steel is used for many types 

of coil springs where the cost of music wire is prohibitive 

and in sizes larger than available in music wire. Not for 

shock or impact loading. Available in diameters 3 to 12 

mm (0.125 to 0.5000 in), but larger and smaller sizes may 

be obtained. Not for use above 180°C (350°F) or at 

subzero temperatures. 

 
 

Hard-drawn 

wire, 0.60–

0.70C 

 
UNS G10660 

AISI 1066 

ASTM A227-47 

This is the cheapest general-purpose spring steel and 

should be used only where life, accuracy, and deflection 

are not too important. Available in diameters 0.8 to 12 

mm (0.031 to 0.500 in). Not for use above 120°C (250°F) 

or at subzero temperatures. 

 
 

 

Chrome- 

vanadium 

 

 
UNS G61500 

AISI 6150 

ASTM 231-41 

This is the most popular alloy spring steel for conditions 

involving higher stresses than can be used with the high- 

carbon steels and for use where fatigue resistance and 

long endurance are needed. Also good for shock and 

impact loads. Widely used for aircraft-engine valve 

springs and for temperatures to 220°C (425°F). Available 

in annealed or pretempered sizes 0.8 to 12 mm (0.031 

to 

0.500 in) in diameter. 

Name of 

Material 

Similar 

Specifications 
Description 



 

 
Chrome-silicon 

UNS G92540
 

AISI 9254 

This alloy is an excellent material for highly stressed 

springs that require long life and are subjected to shock 

loading. Rockwell hardnesses of C50 to C53 are quite 

common, and the material may be used up to 250°C 

(475°F). Available from 0.8 to 12 mm (0.031 to 0.500 in) in 

diameter. 



 
 

Table (7–3) 
Constants A and m of Sut = A/dm for Estimating Minimum Tensile 

Strength of Common Spring Wires 

*Surface is smooth, free of defects, and has a bright, lustrous finish. †Has a slight heat-treating scale which 

must be removed before plating. ‡Surface is smooth and bright with no visible marks. §Aircraft-quality 

tempered wire, can also be obtained annealed. "Tempered to Rockwell C49, but may be obtained 

untempered. #Type 302 stainless steel. * *Temper CA510. 

 
 

Material 
ASTM 

No. 
Exponent 

m 
Diameter, 

in 
A, 

Kpsi.in
m
 

Diameter, 
mm 

A, 
MPa.mm

m
 

Relative 
Cost of 
Wire 

 

 
 
 

Table (7–4) 
Mechanical Properties of Some Spring Wires 

 
 

Material 
Elastic Limit, 
Percent of Sut 

Tension Torsion 

Diameter 
d, in 

E 
Mpsi GPa 

G 
Mpsi GPa 

 



*Also includes 302, 304, and 316. 



 
 

Table (7–5) 
Maximum Allowable Torsional Stresses for Helical Compression 

Springs in Static Applications 

 
 Maximum Percent of Tensile Strength 

Material 
Before Set Removed 

(includes KW or KB) 
After Set Removed 

(includes KS) 
 

 
 

EXAMPLE 7–1 
 

A helical compression spring is made of no.16 music wire of 

diameter (d = 0.037 in). The outside diameter  of  the  spring  is  

7/16 in. The ends are squared and there are 12.5 total turns. 

(a) Estimate the torsional yield strength of the wire. 

(b) Estimate the static load corresponding to the yield strength. 

(c) Estimate the scale of the spring. 

(d) Estimate the deflection that would be caused by the load in 

part (b). 

(e) Estimate the solid length of the spring. 

 

Solution 

 

(a) From Table (7–3), we find A = 201 kpsi·in
m
 and m = 0.145. 

Therefore, from Eq. (7–10) 

 
 

 

Then, from Table (7–5), 

  

 

Ssy = 0.45Sut = 0.45(324) = 146 kpsi 

 

(b) The mean spring coil diameter is D = 7/16 − 0.037 = 0.4 in, and 

so the spring index is C = 0.4/0.037 = 10.8. Then, from Eq. (7–6), 



 

 

 

 

Now rearrange Eq. (7–3) replacing KS and τ with KB and Sys, 

respectively, and solve for F: 

 

 

 

 

(c) From Table (7–1), Na = 12.5 − 2 = 10.5 turns. In Table (7–

4),    G = 11.85 Mpsi, and the scale of the spring is found to be, 

from    Eq. (7–9), 

 

 

 

 

 

 

(d)   

 

 

(e) From Table (7–1), 

 

LS = (Nt + 1) d = (12.5 + 1) 0.037 = 0.5 in 

 

7.6 Helical Compression Spring Design for Static Service 

 

The preferred range of spring index is 4 ≤ C ≤ 12, with the lower 

indexes being more difficult to form (because of the danger of 

surface cracking) and springs with higher indexes tending to 

tangle often enough to require individual packing. This can be 

the first item of the design assessment. The recommended range 

of active turns is 3 ≤ Na ≤ 15. To maintain linearity when a 



spring is about to close, it is necessary to avoid the gradual 

touching of coils (due to non-perfect pitch). A helical coil spring 

force-deflection characteristic is ideally linear. Practically, it is 

nearly so, but not at each end of the force-deflection curve.  The 

spring force is not reproducible for very small deflections, and 

near closure, nonlinear behavior begins as the number of active 

turns diminishes as coils begin to touch. The designer confines 

the spring’s operating point to the central 75 percent of the curve 

between no load, F = 0, and closure, F = FS . Thus, the 

maximum operating force should be limited to Fmax ≤ 7/8 FS . 

 

 

 

it follows that 

 

From the outer equality ξ = 1/7 = 0.143= 0.15. Thus, it is 

recommended that ξ ≥ 0.15. In addition to the relationships and 

material properties for springs, we now have some 

recommended design conditions to follow, namely: 

 

 

 

where ns is the factor of safety at closure (solid height). When 

considering designing a spring for high volume production, the 

figure of merit can be the cost of the wire from which the spring 

is wound. The fom would be proportional to the relative 

material cost, weight density, and volume: 
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a priori decisions, with hard-drawn steel wire the first choice 

(relative material cost is 1.0). Choose a wire size d. With all 

decisions made, generate a column of parameters: d, D, C, OD 

or ID, Na, Ls, L0, (L0)cr, ns , and fom. By incrementing wire 

sizes available, we can scan the table of parameters and apply 

the design recommendations by inspection. After wire sizes are 

eliminated, choose the spring design with the highest figure of 

merit. This will give the optimal design despite the presence of 

a discrete design variable d and aggregation of equality and 

inequality constraints. The column vector of information can be 

generated by using the flowchart displayed in Fig. 10–3. It is 

general enough to accommodate to the situations of as-wound 



and set-removed springs, operating over a rod, or in a hole free 

of rod or hole. In as-wound springs the controlling equation 

must be solved for the spring index as follows. τ = Ssy/ns , C = 

D/d, KB from Eq. (10–6), and Eq. (10–17), 

 

 

 

 

 

Let:   

 

 

 

 

 

 

Substituting previous Equations and simplifying yields a 

quadratic equation in C. The larger of the two solutions will 

yield the spring index 

 

 

 

 

 

Example: A music wire helical compression spring is needed to 

support a 20-lbf load after being compressed 2 in. Because of 

assembly considerations the solid height cannot exceed 1 in and 

the free length cannot be more than 4 in. Design the spring.  

 

Solution: The a priori decisions are • Music wire, A228; from 

Table 10–4, A = 201 000 psi-in
m
 ; m = 0.145; from Table 10–5, 

E = 28.5 Mpsi, G = 11.75 Mpsi (expecting d > 0.064 in)  

• Ends squared and ground  

• Function: Fmax = 20 lbf, ymax = 2 in  

• Safety: use design factor at solid height of (ns)d = 1.2 

 • Robust linearity: ξ = 0.15  

• Use as-wound spring (cheaper), Ssy = 0.45Sut from Table 10–6  

• Decision variable: d = 0.080 in, music wire gage #30, Table 

A–28. From Fig. 10–3 and Table 10–6, 
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: Indexing is used in machine operations when a circular part 

being manufactured must be divided into a certain number of 

segments. Figure 10–4 shows a portion of an indexing fixture 

used to successively position a part for the operation. When the 

knob is momentarily pulled up, part 6, which holds the 

workpiece, is rotated about a vertical axis to the next position 

and locked in place by releasing the index pin. In this example 

we wish to design the spring to exert a force of about 3 lbf and 

to fit in the space defined in the figure caption.  

 

Solution:  Since the fixture is not a high-production item, a 

stock spring will be selected. These are available in music wire. 

In one catalog there are 76 stock springs available having an 

outside diameter of 0.480 in and designed to work in a 1 2 -in 

hole. These are made in seven different wire sizes, ranging from 

0.038 up to 0.063 in, and in free lengths from 1 2 to 2 1 2 in, 

depending upon the wire size. 

 

Since the pull knob must be raised 3 4 in for indexing and the 

space for the spring is 1 3 8 in long when the pin is down, the 

solid length cannot be more than 5 8 in. Let us begin by 

selecting a spring having an outside diameter of 0.480 in, a wire 

size of 0.051 in, a free length of 1 3 4 in, 111 2 total turns, and 



plain ends. Then m = 0.145 and A = 201 kpsi · in
m
 for music 

wire. Then 
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ate and Ls is larger than 5 8 

in, we must investigate other 

springs with a smaller wire size. After several investigations 

another spring has possibilities. It is as-wound music wire, d = 

0.045 in, 20 gauge (see Table A–25) OD = 0.480 in, Nt = 11.5 

turns, L0 = 1.75 in. Ssy is still 139.3 kpsi, and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now ns > 1.2, buckling is not possible as the coils are guarded 

by the hole surface, and the solid length is less than 5 8 in, so 

this spring is selected. By using a stock spring, we take 

advantage of economy of scale. 

 
 


