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2.1 Lenses 

The lens is the most widely used optical device. A lens is a refracting device that reconfigures a 

transmitted energy distribution. That is true whether we are dealing with UV, lightwaves, IR, microwaves, 

radiowaves, or even sound waves. It’s frequently necessary to collect incoming parallel rays and bring 

them together at a point, thereby focusing the energy, as is done with a burning-glass or a telescope lens. 

2.1.1 Aspherical Surfaces 

To see how a lens works, imagine that a transparent substance interpose in the path of a wave in which 

the wave’s speed is different than it was initially. Figure 2.1a presents a cross-sectional view of a diverging 

spherical wave traveling in an incident medium of index 𝑛𝑖 impinging on the curved interface of a 

transmitting medium of index 𝑛𝑡. When 𝑛𝑡 is greater than 𝑛𝑖, the central area of the wavefront travels 

more slowly than its outer extremities, which are still moving quickly through the incident medium. These 

extremities overtake the mid region, continuously flattening the wavefront. If the interface is properly 

configured, the spherical wavefront bends into a plane wave. The alternative ray representation is shown 

in Fig. 2.1b; the rays simply bend toward the local normal upon entering the more dense medium, and if 

the surface configuration is just right, the rays emerge parallel. To find the required shape of the interface, 

refer to Fig. 2.1c, wherein point-A can lie anywhere on the boundary. A little spherical surface of constant 

phase emitted from 𝑆 must evolve into a flat surface of constant phase at 𝐷𝐷́̅̅ ̅̅ . Whatever path the light 

takes from 𝑆  to 𝐷𝐷́̅̅ ̅̅ , it must always be the same number of wavelengths long, so that the disturbance 

begins and ends in-phase. 

 

Figure 2. 1.A hyperbolic interface between air and glass. (a) The wavefronts bend and straighten out. (b) The rays 
become parallel. (c) The hyperbola is such that the optical path from S to A to D is the same no matter where A is. 
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Radiant energy leaving 𝑆 as a single wavefront must arrive at the plane 𝐷𝐷́̅̅ ̅̅ , having traveled for the same amount 

of time to get there, no matter what the actual route taken by any particular ray. In other words, , 𝐹1𝐴 ̅̅ ̅̅ ̅̅ /𝜆𝑖 (the 

number of wavelengths along the arbitrary ray from 𝐹1 to 𝐴 plus 𝐴𝐷 ̅̅ ̅̅ ̅/𝜆𝑡 (the number of wavelengths along the ray 

from 𝐴 to 𝐷) must be constant regardless of where on then interface 𝐴 happens to be. Now, adding these and 

multiplying by 𝜆0, yields 

                                     𝑛𝑖(𝐹1𝐴 ̅̅ ̅̅ ̅̅ ) + 𝑛𝑡(𝐴𝐷 ̅̅ ̅̅ ̅) = constant                 (2.1) 

Each term on the left is the length traveled in a medium multiplied by the index of that medium, and, of 

course, each represents the optical path length, 𝑂𝑃𝐿, traversed. The optical path lengths from 𝑆 to 𝐷𝐷́̅̅ ̅̅ , 

are all equal. If Eq. (2.1) is divided by 𝑐, the first term becomes the time it takes light to travel from 𝑆 to 𝐴 

and the second term, the time from 𝐴 to 𝐷; the right side remains constant (not the same constant, but 

constant). Equation (2.1) is equivalent to saying that all paths from 𝑆 to 𝐷𝐷́̅̅ ̅̅  must take the same amount 

of time to traverse. Let’s return to finding the shape of the interface. Divide Eq. (2.1) by 𝑛𝑖, and it becomes 

                                            𝐹1𝐴 ̅̅ ̅̅ ̅̅ + (
𝑛𝑡

𝑛𝑖
) 𝐴𝐷 ̅̅ ̅̅ ̅ = constant                (2.2) 

This is the equation of a hyperbola in which the eccentricity (e), which measures the bending of the curve, 

is given by (𝑛𝑡 𝑛𝑖⁄ > 1); that is, 𝑒 = 𝑛𝑡𝑖 > 1. The greater the eccentricity, the flatter the hyperbola (the 

larger the difference in the indices, the less the surface need be curved). 

 

Example 2.1 

Use the figure to show that if a point source is placed at the focus F1 of the ellipsoid, plane waves will 

emerge from the far side. Remember that the defining requirement for an ellipse is that the net distance 

from one focus to the curve and back to the other focus is constant. 

 

The 𝑂𝑃𝐿 from F1 to D on Σ must be constant: 

𝑛2(𝐹1𝐴 ̅̅ ̅̅ ̅̅ ) + 𝑛1(𝐴𝐷 ̅̅ ̅̅ ̅) = 𝐶 and (𝐹1𝐴 ̅̅ ̅̅ ̅̅ ) + (𝐴𝐷 ̅̅ ̅̅ ̅)𝑛12 = 𝐶 𝑛2 = 𝐶́⁄  

if Σ corresponding to the directrix of ellipse, 

(𝐹2𝐴 ̅̅ ̅̅ ̅̅ ) = 𝑒(𝐴𝐷 ̅̅ ̅̅ ̅) where 𝑒 is the eccentricity; 

if 𝑛12 = 𝑒  
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we get (𝐹1𝐴 ̅̅ ̅̅ ̅̅ ) + (𝐹2𝐴 ̅̅ ̅̅ ̅̅ ) = 𝐶́ 

One of the first people to suggest using conic sections as surfaces for lenses and mirrors was Johann Kepler 

(1611), but he wasn’t able to go very far with the idea without Snell’s Law. Once that relationship was 

discovered, Descartes (1637), using his invention of Analytic Geometry, could develop the theoretical 

foundations of the optics of aspherical surfaces. 

In Fig. 2.2a diverging incident spherical waves are made into plane waves at the first interface. These plane 

waves within the lens strike the back face perpendicularly and emerge unaltered: 𝜃𝑖 = 0 and 𝜃𝑡 = 0. 

Because the rays are reversible, plane waves incoming from the right will converge to point-F1, which is 

known as the focal point of the lens. Exposed on its flat face to the parallel rays from the Sun, our rather 

sophisticated lens would serve nicely as a burning-glass. In Fig. 2.2b, the plane waves within the lens are 

made to converge toward the axis by bending at the second interface. Both of these lenses are thicker at 

their midpoints than at their edges and are therefore said to be convex (from the Latin convexus, meaning 

arched). Each lens causes the incoming beam to converge somewhat, to bend a bit more toward the 

central axis; therefore, they are referred to as converging lenses. In contrast, a concave lens (from the 

Latin concavus, meaning hollow—and most easily remembered because it contains the word cave) is 

thinner in the middle than at the edges, as is evident in Fig. 2.2c. It causes the rays that enter as a parallel 

bundle to diverge. All such devices that turn rays outward away from the central axis (and in so doing add 

divergence to the beam) are called diverging lenses. In Fig. 2.2c, parallel rays enter from the left and, on 

emerging, seem to diverge from F2; still, that point is taken as a focal point. When a parallel bundle of 

rays passes through a converging lens, the point to which it converges (or when passing through a 

diverging lens, the point from which it diverges) is a focal point of the lens. 

 

Figure 2. 2.(a), (b), and (c) Several hyperbolic lenses seen in cross section. (d) A selection of aspherical lenses. 
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If a point source is positioned on the central or optical axis at the point-F1 in front of the lens in Fig. 2.2b, 

rays will converge to the conjugate point-F2. the conjugate point-F2. A luminous image of the source would 

appear on a screen placed at F2, an image that is therefore said to be real. On the other hand, in Fig. 2.2c 

the point source is at infinity, and the rays emerging from the system this time are diverging. They appear 

to come from a point-F2, but no actual luminous image would appear on a screen at that location. The 

image here is spoken of as virtual, as is the familiar image generated by a plane mirror. 

2.1.2 Refraction at Spherical Surfaces 

The vast majority of quality lenses in use today have surfaces that are segments of spheres. Our intent 

here is to establish techniques for using such surfaces to simultaneously image a great many object points 

in light composed of a broad range of frequencies. Image errors, known as aberrations, will occur, but it 

is possible with the present technology to construct high-quality spherical lens systems whose aberrations 

are so well controlled that image fidelity is limited only by diffraction.  

Figure 2.3 depicts a wave from the point source 𝑆 impinging on a spherical interface of radius 𝑅 Rcentered 

at 𝐶. The point- 𝑉 is called the vertex of the surface. The length 𝑠0 = 𝑆𝑉̅̅̅̅  is known as the object distance. 
The ray 𝑆𝐴̅̅̅̅  will be refracted at the interface toward the local normal (𝑛2 > 𝑛1) and therefore toward the 
central or optical axis. Assume that at some point- 𝑃 the ray will cross the axis, as will all other rays 
incident at the same angle 𝜃𝑖  (Fig. 2.4). The length 𝑠𝑖 = 𝑉𝑃̅̅ ̅̅  is the image distance. Fermat’s Principle 
maintains that the optical path length 𝑂𝑃𝐿 will be stationary; that is, its derivative with respect to the 
position variable will be zero. For the ray in question, 

                                           𝑂𝑃𝐿 = 𝑛1𝑙0 + 𝑛2𝑙𝑖                     (2.3)  

Using the law of cosines in triangles 𝑆𝐴𝐶 and 𝐴𝐶𝑃 along with the fact that 

                                   𝑐𝑜𝑠𝜑 = − cos(180 − 𝜑), we get 

𝑙0 = [𝑅2 + (𝑠0 + 𝑅)2 − 2𝑅(𝑠0 + 𝑅)𝑐𝑜𝑠𝜑]1 2⁄  

and                     𝑙𝑖 = [𝑅2 + (𝑠𝑖 + 𝑅)2 − 2𝑅(𝑠𝑖 + 𝑅)𝑐𝑜𝑠𝜑]1 2⁄  

The 𝑂𝑃𝐿 can be rewritten as 

𝑂𝑃𝐿 = 𝑛1[𝑅2 + (𝑠0 + 𝑅)2 − 2𝑅(𝑠0 + 𝑅)𝑐𝑜𝑠𝜑]1 2⁄ + 𝑛2[𝑅2 + (𝑠𝑖 + 𝑅)2 − 2𝑅(𝑠𝑖 + 𝑅)𝑐𝑜𝑠𝜑]1 2⁄  

 

 

 

 

 

 

 

  
 

Figure 2. 3. Refraction at a spherical interface. 

 

Figure 2. 4. Rays incident at the same angle.  
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All the quantities in the diagram (𝑠𝑖, 𝑠0, 𝑅, etc.) are positive numbers, and these form the basis of a sign 

convention that is gradually unfolding and to which we shall return time and again. Inasmuch as the point-

A moves at the end of a fixed radius (i.e., 𝑅= constant), 𝜑 is the position variable, and thus setting 

𝑑(𝑂𝑃𝐿) 𝑑𝜑⁄ = 0, via Fermat’s Principle we have 

                       
𝑛1𝑅(𝑠0+𝑅)𝑠𝑖𝑛𝜑

2𝑙0
−

𝑛2𝑅(𝑠𝑖+𝑅)𝑠𝑖𝑛𝜑

2𝑙𝑖
= 0                          (2.4) 

From which it follow that 

                                
𝑛1

𝑙0
+

𝑛2

𝑙𝑖
=

1

𝑅
(

𝑛2𝑠𝑖

𝑙𝑖
−

𝑛1𝑠0

𝑙𝑖0
)                       (2.5) 

Although this expression is exact, it is rather complicated. If 𝐴 is moved to a new location by changing  𝜑, 

the new ray will not intercept the optical axis at 𝑃. The approximations that are used to represent 𝑙0 and 

𝑙𝑖 and thereby simplify Eq. (2.5), are crucial in all that is to follow. Recall that 

                             𝑐𝑜𝑠𝜑 = 1 −
𝜑2

2!
+

𝜑4

4!
+

𝜑6

6!
+ ⋯                  (2.6) 

  and                          𝑠𝑖𝑛𝜑 = 𝜑 −
𝜑3

3!
+

𝜑5

5!
+

𝜑7

7!
+ ⋯                   (2.7) 

If we assume small values of 𝜑 (i.e., 𝐴 close to 𝑉), 𝑐𝑜𝑠𝜑 ≈ 1. Consequently, the expressions for 𝑙0 and 

𝑙𝑖 yield 𝑙0 ≈ 𝑠0 and 𝑙𝑖 ≈ 𝑠𝑖  and to that approximation.  

                                                
𝑛1

𝑠0
+

𝑛2

𝑠𝑖
=

𝑛2−𝑛1

𝑅
                         (2.8) 

This approximation delineates the domain of what is called first-order theory; we’ll examine third-order 

theory. Rays that arrive at shallow angles with respect to the optical axis (such that 𝜑 and ℎ are 

appropriately small) are known as paraxial rays. The emerging wavefront segment corresponding to 

these paraxial rays is essentially spherical and will form a “perfect” image at its centre 𝑃 located at 𝑠𝑖. 

Notice that Eq. (2.8) is independent of the location of 𝐴 over 𝑎 small area about the symmetry axis, 

namely, the paraxial region.  

Gauss, in 1841, was the first to give a systematic exposition of the formation of images under the above 

approximation, and the result is variously known as first-order, paraxial, or Gaussian Optics. It soon 

became the basic theoretical tool by which lenses would be designed for several decades to come. If the 

optical system is well corrected, an incident spherical wave will emerge in a form very closely resembling 

a spherical wave. Consequently, as the perfection of the system increases, it more closely approaches 

first-order theory. Deviations from that of paraxial analysis will provide a convenient measure of the 

quality of an actual optical device. 

If point-Fo in Fig. 2.5 is imaged at infinity (𝑠𝑖 = ∞), we have  
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𝑛1

∞
+

𝑛2

𝑠𝑖
=

𝑛2 − 𝑛1

𝑅
 

Defining the second or image focal length 𝐹𝑖 as equal to 𝑠𝑖  in this special case (Fig.2.5), we have 

                                          𝑓𝑖 =
𝑛2

𝑛2−𝑛1
𝑅                    (2.10) 

Recall that an image is virtual when the rays diverge from it (Fig. 2.6). Analogously, an object is virtual 

when the rays converge toward it (Fig. 2.7). Observe that the virtual object is now on the right-hand side 

of the vertex, and therefore 𝑠0 will be a negative quantity. Moreover, the surface is concave, and its radius 

will also be negative, as required by Eq. (2.9), since 𝑓0 would be negative. In the same way, the virtual 

image distance appearing to the left of V is negative. 

 

 

 

 

 

 

 

 

 

 

           
𝑛1

𝑠0
+

𝑛2

∞
=

𝑛2−𝑛1

𝑅
                     

That special object distance is defined as the first focal 

length or the object focal length, 𝑠0 = 𝑓0 , so that 

             𝑓0 =
𝑛1

𝑛2−𝑛1
𝑅                 (2.9) 

Point-Fo is known as the first or object focus. Similarly, 

the second or image focus is the axial point-𝐹𝑖, where the 

image is formed when 𝑠0 = ∞; that is, 

 

Figure 2. 5. Plane waves propagating beyond a 
spherical interface—the object focus. 

 

Figure 2. 7. A virtual image point. 

 

Figure 2. 6 . A virtual object point 
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Example 2.2 

Making use of Fig. P.5.5, Snell’s Law, and the fact that in the paraxial region 𝛼 = ℎ 𝑠0⁄ , 𝜑 ≈

ℎ 𝑅⁄ , 𝑎𝑛𝑑 𝛽 ≈ ℎ 𝑠𝑖⁄ , derive Eq. (2.8). 

 

Solution 

𝜃2 + (180° − 𝜑) + 𝛽 = 180° 

𝜃2 = 𝜑 − 𝛽 

𝑠𝑖𝑛𝜃2 = 𝑠𝑖𝑛(𝜑 − 𝛽) 

= 𝑠𝑖𝑛𝜑 cos(−𝛽) + 𝑐𝑜𝑠𝜑𝑠𝑖𝑛(−𝛽) 

≈ 𝑠𝑖𝑛𝜑 − 𝑠𝑖𝑛𝛽 

ℎ 𝑅⁄ − ℎ 𝑠𝑖⁄  

(180° − 𝜃1) + 𝜑 − 𝛼 = 180° 

𝜃1 = 𝜑 + 𝛼 

𝑠𝑖𝑛𝜃1 = sin (𝜑 + 𝛼) 

= sin𝜑𝑐𝑜𝑠𝛼 + cos𝜑𝑠𝑖𝑛𝛼 

≈ ℎ 𝑅⁄ + ℎ 𝑠⁄  

𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2; 𝑛1(ℎ 𝑅⁄ + ℎ 𝑠0)⁄ = 𝑛2 (ℎ 𝑅⁄ + ℎ 𝑠𝑖)⁄  

𝑛1 𝑠0⁄ + 𝑛2 𝑠𝑖⁄ = (𝑛2 − 𝑛1)/𝑅 

 

2.1.3 Thin Lenses 

Lenses are made in a wide range of forms; for example, there are acoustic and microwave lenses. Some 

are made of glass or wax in easily recognizable shapes, whereas others are far more subtle in appearance. 

Most often a lens has two or more refracting interfaces, and at least one of these is curved. Generally, the 
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nonplanar surfaces are centred on a common axis. These surfaces are most frequently spherical segments 

and are often coated with thin dielectric films to control their transmission properties.  

A lens that consists of one element (i.e., it has only two refracting surfaces) is a simple lens. The presence 

of more than one element makes it a compound lens. A lens is also classified as to whether it is thin or 

thick—that is, whether or not its thickness is effectively negligible. The simple lens can take the forms 

shown in Fig. 2.7. 

 

Figure 2. 8. Cross sections of various centred spherical simple lenses. The surface on the left is ≠ 1, since it is 
encountered first. Its radius is R1. 

 

Lenses that are variously known as convex, converging, or positive are thicker at the centre and so tend 

to decrease the radius of curvature of the wavefronts. In other words, the incident wave converges more 

as it traverses the lens, assuming, of course, that the index of the lens is greater than that of the media in 

which it is immersed. Concave, diverging, or negative lenses, on the other hand, are thinner at the centre 

and tend to advance that portion of the incident wavefront, causing it to diverge more than it did prior to 

entry. 

Thin-Lens Equations 

Return to the discussion of refraction at a single spherical interface, where the location of the conjugate 

points-S and -P is given by Eq. (2.8) 
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𝑛1

𝑠𝑜
+

𝑛2

𝑠𝑖
=

𝑛2 − 𝑛1

𝑅
 

When 𝑠𝑜  is large for a fixed 𝑛2 − 𝑛1 𝑅⁄ , 𝑠𝑖  is relatively small. The cone of rays from S has a small central 

angle, the rays do not diverge very much, and the refraction at the interface can cause them all to 

converge at P. As 𝑠𝑜 decreases, the ray-cone angle increases, the divergence of the rays increases, and 𝑠𝑖  

moves away from the vertex; that is, both 𝜃𝑖  and 𝜃𝑡  increase until finally 𝑠𝑜 = 𝑓𝑜  and 𝑠𝑖 = ∞. At that point, 

𝑛1 𝑠𝑜  ⁄ = (𝑛2 − 𝑛1)/𝑅, so that if 𝑠𝑜  gets any smaller, 𝑠𝑖   will have to be negative, if Eq. (2.8) is to hold. In 

other words, the image becomes virtual (Fig. 2.9). 

 

 

Figure 2. 9. Refraction at a spherical interface between two transparent media shown in cross section. 

 

Let’s now locate the conjugate points for a lens of index 𝑛𝑙 surrounded by a medium of index 𝑛𝑚, as in 

Fig. 2.10, where another end has simply been ground onto the piece in Fig. 2.9c. This certainly isn’t the 

most general set of circumstances, but it is the most common, it is the simplest. We know from Eq. (2.8) 

that the paraxial rays issuing from S at 𝑠𝑜1 will appear to meet at P, a distance, which we now call 𝑠𝑜1, 

from 𝑉1, given by 
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𝑛𝑚

𝑠𝑜1
+

𝑛𝑙

𝑠𝑖1
=

𝑛𝑙−𝑛𝑚

𝑅1
                  (2.11) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
𝑛𝑚

𝑠𝑜1
+

𝑛𝑚

𝑠𝑖2
= (𝑛𝑙 − 𝑛𝑚) (

1

𝑅1
−

1

𝑅2
) +

𝑛𝑙𝑑

(𝑠𝑖1−𝑑)𝑠𝑖1
         (2.14) 

 

 

Figure 2. 10. A spherical lens. (a) Rays in a vertical plane passing 
through a lens. Conjugate foci. (b) Refraction at the interfaces 
where the lens is immersed in air and nm= na. The radius drawn 
from C1 is normal to the first surface, and as the ray enters the 
lens it bends down toward that normal. The radius from C2 is 
normal to the second surface; and as the ray emerges, since nl >
na, the ray bends down away from that normal. (c) The 
geometry. 

 

Thus, as far as the second surface is concerned, 

it rays coming toward it from P, which serves as 

its object point a distance 𝑠𝑜2 away. 

Furthermore, the rays arriving at that second 

surface are in the medium of index 𝑛𝑙. The 

object space for the second interface that 

contains 𝑃́ therefore has an index 𝑛𝑙. Note that 

the rays from 𝑃́ to that surface are indeed 

straight lines. Considering the fact that 

|𝑠𝑜2| = |𝑠𝑖1| + 𝑑 

since 𝑠𝑜2 is on the left and therefore positive, 

𝑠𝑜2 = |𝑠𝑜2|, and 𝑠𝑖1 is also on the left and 

therefore negative, −𝑠𝑖1 = |𝑠𝑖1|, we have 

      𝑠𝑜2 = −𝑠𝑖1 + 𝑑           (2.12) 

At the second surface Eq. (2.8) yields 

 𝑛𝑚

−𝑠𝑖1+𝑑
+

𝑛𝑙

𝑠𝑖2
=

𝑛𝑙−𝑛𝑚

𝑅1
      (2.13)  

Here 𝑛𝑙 > 𝑛𝑚 and 𝑅2 > 0, so that the right-

hand side is positive. Adding Eqs. (2.11) and 

(2.13), we have  
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If the lens is thin enough (𝑑 → 0), the last term on the right is effectively zero. As a further simplification, 

assume the surrounding medium to be air (i.e., 𝑛𝑚 ≈ 1). Accordingly, we have the very useful Thin-Lens 

Equation, often referred to as the Lensmaker’s Formula: 

                             1

𝑠𝑜
+

1

𝑠𝑖
= (𝑛𝑙 − 1) (

1

𝑅1
−

1

𝑅2
)                     (2.15) 

where we let 𝑠𝑜1 = 𝑠𝑜 and 𝑠𝑖1 = 𝑠𝑖. The points-𝑉1 and -𝑉2 tend to coalesce as (𝑑 → 0), so that 𝑠𝑜and 𝑠𝑖  

can be measured from either the vertices or the lens centre. Just as in the case of the single spherical 

surface, if 𝑠𝑜  is moved out to infinity, the image distance becomes the focal length 𝑓𝑖, or symbolically, 

lim
𝑠𝑜→∞

𝑠𝑖 = 𝑓𝑖  

Similarly 

lim
𝑠𝑖→∞

𝑠𝑜 = 𝑓𝑜 

It is evident from Eq. (2.15) that for a thin lens 𝑓𝑖 = 𝑓𝑜 , and consequently we drop the subscripts 

altogether. Thus 

                                                     
1

𝑓
= (𝑛𝑙 − 1)(

1

𝑅1
−

1

𝑅2
)                                            (2.16) 

and                                             
1

𝑠𝑜
+

1

𝑠𝑖
=

1

𝑓
                                     (2.17) 

which is the famous Gaussian Lens Formula (see photo). 

 

The actual wavefronts of a diverging lightwave partially focused by a lens. The picture was made using a 
holographic technique. 
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As an example of how these expressions might be used, let’s compute the focal length in air of a thin 

planar-convex lens having a radius of curvature of 50 mm and an index of 1.5. With light entering on the 

planar surface (𝑅1 = ∞, 𝑅2 = −50) 

1

𝑓
= (1.5 − 1)(

1

∞
−

1

−50
) 

whereas if instead it arrives at the curved surface (𝑅1 = +50, 𝑅2 = ∞), 

1

𝑓
= (1.5 − 1)(

1

+50
−

1

∞
) 

and in either case ƒ = 100 mm. If an object is alternately placed at distances 600 mm, 200 mm, 150 mm, 

100 mm, and 50 mm from the lens on either side, we can find the image points from Eq. (2.17). First, with 

𝑠𝑜 = 600 mm 

𝑠𝑖 =
𝑠𝑜𝑓

𝑠𝑜 − 𝑓
=

(600)(100)

600 − 100
 

and 𝑠𝑖  = 120 mm. Similarly, the other image distances are 200 mm, 300 mm, ∞, and -100 mm, respectively. 

 

Focal Points and Planes 

Figure 2.11 summarizes some of the situations described analytically by Eq. 2.16. Observe that if a lens 

of index 𝑛𝑙 is immersed in a medium of index 𝑛𝑚, 

                                                     
1

𝑓
= (𝑛𝑙𝑚 − 1)(

1

𝑅1
−

1

𝑅2
)                                 (2.18) 

 

Figure 2. 11. Focal lengths for converging and diverging lenses. 
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The focal lengths in (a) and (b) of Fig. 2.11 are equal, because the same medium exists on either side of 

the lens. Since 𝑛𝑙 > 𝑛𝑚, it follows that 𝑛𝑙𝑚 > 1. In both cases 𝑅1 > 0 and 𝑅2 < 0, so that each focal 

length is positive. We have a real object in (a) and a real image in (b). In (c), 𝑛𝑙 < 𝑛𝑚, and consequently f 

is negative. In (d) and (e), 𝑛𝑙𝑚 > 1 but 𝑅1 < 0, whereas 𝑅2 > 0, so  𝑓 is again negative, and the object in 

one case and the image in the other are virtual. In (𝑓), 𝑛𝑙𝑚 < 1, yielding an 𝑓 > 0. 

The  transverse distances above the optical axis are taken as positive quantities, and those below the axis 

are given negative numerical values. Therefore in Fig. 2.12 𝑦𝑜 > 0 and 𝑦𝑖 < 0. Here the image is said to 

be inverted, whereas if 𝑦𝑖 > 0 when 𝑦𝑜 < 0, it is right-side-up or erect. Observe  that triangles 𝐴𝑂𝐹𝑖 and 

𝑃2𝑃1𝐹𝑖 are similar. Ergo 

                                                                  
𝑦𝑜

|𝑦𝑖|
=

𝑓

(𝑠𝑖−𝑓)
                            (2.19) 

In the same way, triangles 𝑆2𝑆1𝑂 and 𝑃2𝑃1𝑂 are similar, and 

                                            
𝑦𝑜

|𝑦𝑖|
=

𝑆𝑜

𝑠𝑖
                                   (2.20) 

where all quantities other than  𝑦𝑖  are positive. Hence 

                                            
𝑆𝑜

𝑆𝑖
=

𝑓

(𝑠𝑖−𝑓)
                            (2.21) 

  and                                                         
1

𝑓
=

1

𝑆𝑜
+

1

𝑆𝑖
 

 

Figure 2. 12. Object and image location for a thin lens.. 
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which is, of course, the Gaussian Lens Equation [Eq. (2.17)]. Furthermore, triangles 𝑆2𝑆1𝐹𝑜 and 𝐵𝑂𝐹𝑜are 

similar and 

                                              
𝑓

(𝑠𝑜−𝑓)
=

|𝑦𝑖|

𝑦𝑜
            (2.22) 

Using the distances measured from the focal points and combining this information with Eq. (2.19) leads 

to 

                                                               𝑥𝑜𝑥𝑖 = 𝑓2             (2.23)     

 This is the Newtonian form of the lens equation, the first statement of which appeared in Newton’s 

Opticks in 1704. The signs of 𝑥𝑜 and 𝑥𝑖 are consedered with respect to their concomitant foci. By 

convention, 𝑥𝑜 is taken to be positive left of 𝐹𝑜, whereas 𝑥𝑖 is positive on the right of 𝐹𝑖. It is evident from 

Eq. (2.23) that 𝑥𝑜 and 𝑥𝑖 have like signs, which means that the object and image must be on opposite 

sides of their respective focal points. The ratio of the transverse dimensions of the final image formed by 

any optical system to the corresponding dimension of the object is defined as the lateral or transverse 

magnification, 𝑀𝑇, that is, 

                                             𝑀𝑇 ≡
𝑦𝑖

𝑦𝑜
               (2.24) 

Or from Eq. (2.20) 

                                            𝑀𝑇 = −
𝑠𝑖

𝑠𝑜
               (2.25) 

A positive MT connotes an erect image, while a negative value means the image is inverted (see Table 

2.1). 
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 Bear in mind that 𝑠𝑖  and 𝑠𝑜 are both positive for real objects and images. Clearly, then, all real images 

formed by a single thin lens will be inverted. The Newtonian expression for the magnification follows 

from Eqs. (2.19) and (2.22) and Fig. 2.12: 

                                        𝑀𝑇 = −
𝑥𝑖

𝑓
= −

𝑓

𝑥𝑜
            (2.26) 

The term magnification is a bit of a misnomer, since the magnitude of 𝑀𝑇 can certainly be less than 1, in 

which case the image is smaller than the object. We have 𝑀𝑇 = −1 when the object and image distances 

are positive and equal, and that happens [Eq. (2.17)] only when 𝑠𝑜 = 𝑠𝑖 = 2𝑓. This turns out to be the 

configuration in which the object and image are as close together as they can possibly get.  

 

A biconvex (also called a double convex) thin spherical lens has radii of 100 cm and 20.0 cm. The lens is 

made of glass with an index of 1.54 and is immersed in air. (a) If an object is placed 70.0 cm in front of the 

100-cm surface, locate the resulting image and describe it in detail. (b) Determine the transverse 

magnification of the image. (c) Draw a ray diagram. 

SOLUTION 

(a) We don’t have the focal length, but we do know all the physical parameters, so Eq. (2.16) comes to 

mind: 

                                                     
1

𝑓
= (𝑛𝑙 − 1)(

1

𝑅1
−

1

𝑅2
) 

Leaving everything in centimetres 

                                                     
1

𝑓
= (1.54 − 1)(

1

100
−

1

−20
) 

                                                     
1

𝑓
= (0.54)(

1

100
+

1

20
) 

1

𝑓
= (0.54)(

6

100
) 

 𝑓 = 30.86𝑐𝑚 ≈ 30.9 𝑐𝑚 

Now we can find the image. Since 𝑠𝑜 = 70.0 cm, that’s greater than 2𝑓—hence, even before we calculate 

𝑠𝑖, we know that the image will be real, inverted, located between 𝑓 and 2𝑓, and minified. To find 𝑠𝑖, 

having 𝑓we use Gauss’s Equation: 

Example 2.3 
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1

30.86
=

1

70
+

1

𝑆𝑖
 

1

𝑆𝑖
=

1

30.86
−

1

70
= 0.01812 

 𝑆𝑖 = 55.19 = 55.2𝑐𝑚 

The image is between 𝑓 and 2𝑓 on the right of the lens. Note that 𝑠𝑖 > 0, which means the image is real. 

(b) The magnification follows from 

𝑀𝑇 = −
𝑠𝑖

𝑠𝑜
=

55.19

70
= −0.788 

and the image is inverted (𝑀𝑇 < 0) and minified (𝑀𝑇 < 1). 

(c) Draw the lens and mark out two focal lengths 

 

 

We are now in a position to understand the entire range of behaviour of a single convex or concave lens. 

Figure 2.13 illustrates the behaviour pictorially. As the object approaches the lens, the real image moves 

away from it. When the object is very far away, the image (real, inverted, and minified 𝑀𝑇 < 1) is just to 

the right of the focal plane. As the object approaches the lens, the image (still real, inverted, and minified 

𝑀𝑇 < 1) moves away from the focal plane, to the right, getting larger and larger. With the object between 

infinity and 2𝑓 we have the arrangement for cameras and eyeballs, both of which require a minified, real 

image. By the way, it’s the brain that flips the image so that you see things right-side-up. When the object 

is at two focal lengths, the image (real and inverted) is now life size, that is, 𝑀𝑇 = 1. This is the usual 

configuration of the photocopy machine. As the object comes closer to the lens (between 2𝑓 and 𝑓), the 

image (real, inverted, and enlarged 𝑀𝑇 > 1) rapidly moves to the right and continues to increase in size. 

This configuration corresponds to the film projector where the crucial feature is that the image is real and 

enlarged. To compensate for the image being inverted, the film is simply put in upside-down. 
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Figure 2. 13. The image-forming behaviour of a thin positive lens. 

 

Longitudinal Magnification 

The image of a three-dimensional object will itself occupy a three-dimensional region of space. The optical 

system can apparently affect both the transverse and longitudinal dimensions of the image. The 

longitudinal magnification, 𝑀𝐿, which relates to the axial direction, is defined as 

                                                                   𝑀𝐿 ≡
𝑑𝑥𝑖

𝑑𝑥𝑜
                         (2.27) 

This is the ratio of an infinitesimal axial length in the region of the image to the corresponding length in 

the region of the object. Differentiating Eq. (2.23) leads to 
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                                           𝑀𝐿 = −
𝑓2

𝑥𝑜
2 = −𝑀𝑇

2                  (2.28) 

for a thin lens in a single medium (Fig. 2.14). Evidently, 𝑀𝐿 < 0, which implies that a positive 𝑑𝑥𝑜 

corresponds to a negative 𝑑𝑥𝑖 and vice versa. In other words, a finger pointing toward the lens is imaged 

pointing away from it (Fig. 2.15). 

 

Figure 2. 14. The transverse magnification is different from the longitudinal magnification. 

 

 

Figure 2. 15. Image orientation for a thin lens. 

 

Thin-Lens Combinations 

We’ll now derive expressions for parameters associated with thin-lens combinations. Consider two thin 

positive lenses 𝐿1and 𝐿2 separated by a distance 𝑑, which is smaller than either focal length, as in Fig. 

2.16. The resulting image can be located graphically as follows. Overlooking 𝐿2 for a moment, construct 

the image formed exclusively by 𝐿1 using rays-2 and -3. As usual, these pass through the lens object and 

image foci, 𝐹𝑜1 and 𝐹𝑖1, respectively. The object is in a normal plane, so that two rays determine the top 

of the image, and a perpendicular to the optical axis finds its bottom. Ray-4 is then constructed running 

backward from 𝑃1́ through 𝑂2. Insertion of 𝐿2 has no effect on ray-4, whereas ray-3 is refracted through 

the image focus 𝐹𝑖2 of 𝐿2. The intersection of rays-4 and -3 fixes the image, which in this particular case is 

real, minified, and inverted. 
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Figure 2. 16. Two thin lenses separated by a distance smaller than either focal length. 
 

A similar pair of lenses is illustrated in Fig. 2.17, in which the separation has been increased. Once again 

rays-2 and -3 through 𝐹𝑖1 and 𝐹𝑜1 fix the position of the intermediate image generated by 𝐿1 alone. As 

before, ray-4 is drawn backward from 𝑂2 to 𝑃1 to 𝑆1. The intersection of rays-3 and -4, as the former is 

refracted through 𝐹𝑖2, locates the final image. This time it is real and erect. Notice that if the focal length 

of 𝐿2 is increased with all else constant, the size of the image increases as well. 

Analytically, looking only at 𝐿1 in Fig. 2.16, 

                                            
1

𝑠𝑖1
=

1

𝑓1
−

1

𝑠𝑜1
           (2.29)   

  or                                         𝑠𝑖1 =
𝑠𝑜1𝑓1

𝑠𝑜1−𝑓1
           (2.30)   

This is positive, and the intermediate image (at 𝑃1) is to the right of 𝐿1, when 𝑠𝑜1 > 𝑓1  and 𝑓1 > 0. Now 

considering the second lens 𝐿2 with its object at 𝑃1  

                                              𝑠𝑜2 = 𝑑 − 𝑠𝑖1           (2.31) 
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Figure 2. 17. Two thin lenses separated by a distance greater than the sum of their focal lengths. Because the 
intermediate image is real, you could start with point-P1  and treat it as if it were a real object point for L2. Thus a 
ray from P1 through F02 would arrive at P1. 

 

and if 𝑑 > 𝑠𝑖1, the object for 𝐿2 is real (as in Fig. 2.17), whereas if 𝑑 > 𝑠𝑖1, it is virtual (𝑠𝑜2 < 0, as in Fig. 

2.16). In the former instance the rays approaching 𝐿2 are diverging from 𝑃1, whereas in the latter they are 

converging toward it. As drawn in Fig. 2.16a, the intermediate image formed by 𝐿1 is the virtual object for 

𝐿2. Furthermore, for 𝐿2 

1

𝑠𝑖2
=

1

𝑓2
−

1

𝑠𝑜2
 

or 𝑠𝑖2 =
𝑠𝑜2𝑓2

𝑠𝑜2−𝑓2
 

Using Eq. (2.31), we obtain 

                                                            𝑠𝑖2 =
(𝑑−𝑠𝑖1)𝑓2

𝑑−𝑠𝑖1−𝑓2
                (2.32) 

In this same way we could compute the response of any number of thin lenses. It will often be convenient 

to have a single expression, at least when dealing with only two lenses, so substituting for 𝑠𝑖1 from Eq. 

(2.29),   

                                          𝑠𝑖2 =
𝑓2𝑑−𝑓2𝑠𝑜1𝑓1/(𝑠𝑜1−𝑓1)

𝑑−𝑓2−𝑠𝑜1𝑓1/(𝑠𝑜1−𝑓1)
                (2.33) 

Here 𝑠𝑜1 and 𝑠𝑖2 are the object and image distances, respectively, of the compound lens. 
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Inasmuch as 𝐿2 “magnifies” the intermediate image formed by 𝐿1, the total transverse magnification of 

the compound lens is the product of the individual magnifications, that is, 

𝑀𝑇 = 𝑀𝑇1𝑀𝑇2 

                                            𝑀𝑇 =
𝑓1𝑠𝑖2

𝑑(𝑠𝑜1−𝑓1)−𝑠𝑜1𝑓1
           (2.34) 

Example  

Verify Eq. (2.34), which gives 𝑀𝑇 for a combination of two thin lenses.    H.W 

  

A thin biconvex lens having a focal length of +40.0 cm is located 30.0 cm in front (i.e., to the left) of a thin 

biconcave lens of focal length -40.0 cm. If a small object is situated 120 cm to the left of the positive lens 

(a) determine the location of its image by calculating the effect of each lens. (b) Compute the 

magnification. (c) Describe the image. 

SOLUTION 

(a) The first lens forms an intermediate image at 𝑠𝑖1, where 

1

𝑓1
=

1

𝑠01
−

1

𝑠𝑖1
 

1

40
=

1

120
−

1

𝑠𝑖1
 

                                                                 
1

𝑠𝑖1
=

1

40
−

1

120
=

2

120
 

 𝑠𝑖1 = 60 𝑐𝑚 

That’s 30.0 cm to the right of the negative lens. Hence 𝑠𝑜2 = −30 𝑐𝑚 and 

1

𝑓2
=

1

𝑠02
−

1

𝑠𝑖2
 

1

−40
=

1

−30
−

1

𝑠𝑖2
 

𝑠𝑖2 = +120 𝑐𝑚 

The image is formed 120 cm to the right of the negative lens. 

(b) The magnification is 

Example 2.4 

Example 2.5 
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𝑀𝑇 = 𝑀𝑇1𝑀𝑇2 = (−
𝑠𝑖1

𝑠𝑜1
) (−

𝑠𝑖2

𝑠𝑜2
) 

𝑀𝑇 = (−
60

120
) (−

120

−30
) = −2 

(c) The image is real, because 𝑠𝑖2 > 0; inverted, because 𝑀𝑇 < 0; and magnified. We could check 𝑀𝑇 

using Eq. (2.34) 

𝑀𝑇 =
40(120)

30(120 − 40) − 120(40)
=

40(120)

−40(60)
 

 

 𝑀𝑇 = −2 

and 𝑠𝑖2 using Eq. (2.33) 

𝑠𝑖2 =
(−40)(30) − (−40)(120)(40)/(120 − 40)

30 − (−40) − 120(40)/(120 − 40)
 

  

𝑠𝑖2 =
−1200 + (40)(60)

70 − 60
=

1200

10
= 120𝑐𝑚 

 


