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Magnitude of the Energy Gap:

The wavefunctions at the Brillouin zone boundary k =7/, are

V2 cosmx/a and V2 sinmx/a, normalized over unit length or line.
Let us suppose that the potential energy of an electron in the crystal at
point X is

U(x) = Ucos2nx/a
The first-order energy difference between the two standing wave
states is

E, = jo dx UG [ = [$ ()]

[ dx Ucos(2nx/a) (cos®* mx/a — sin® nx/a) = U

We see that the gap is equal to the Fourier component of the
crystal potential.

Bloch function.

Bloch considered the total potential of crystal (crystal potential) [V(r)]
IS the sum of two parts:
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1- The electrostatic potential [V;(r)] due to the array of atomic
cores. For a perfect lattice (i.e., one with no phonons), this
contribution to V(r) should have the translational periodicity of
the lattice.
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2- The potential [V, (r)] due to all other outer electrons. Bloch
assumed that the charge density from this source would have the
same long-term average value in every unit cell of the crystal and
would thus also be periodic. Such an assumption certainly
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satisfies the requirements of electrical neutrality and crudely
takes account of electron-electron repulsion.
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V(r) =Vi(r) + Ve(r)
From Schrodinger equation in 3-dimension for one electron

[Ev2+u@)|w=Ew

Where U(r) = —eV (r) has the periodicity of the lattice

He calculated that the wave function which satisfies this equation
subject to each potential must be of the form:

Wi (r) = Up (1) ™"

Where U, () is a function (independent on the time and it is
depending on the value of the wave vector K) also, it has the complete
periodicity of the lattice.
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Up() =Up(r+T)
Where T is translation vector.
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W, (r +T) = Ug(r +T) etk (r+D)
W, (r+T) =W,(r) ekT
This is the equation of Block function.



Bloch theorem: states that the eigen function of the wave equation
for a periodic potential are of the form of the product of a plane wave
e® 7 times a function U, (r) with the periodicity of the crystal
lattice.

Kronig-Penney model.

A periodic for which the wave equation can be solved in terms of
elementary functions is the square-well array of Figure The wave
equation is
h? d?y
—— —4+U)¥Y =¥ ... (1)

2m dx?

where U(X) is the potential energy and € is the energy eigenvalue. In
the region 0 < x < a in which U = 0, the eigenfunction is a linear
combination,

Y = Ae®¥ + Be~thx . (2)
of plane waves traveling to the right and to the left, with energy
e=h*k?/2m ... (3)
In the region -b < x < 0 within the barrier the solution is of the form
Y =Ce% +De @ ... (4)
U,— e=h?0%/2m  ............... (5)
$ Ulx
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Figure (1) Square-well periodic potential as introduced by
Kronig and Penney.



we want the complete solution to have the Bloch form
(Wi (r) = Uy (T)exP(ik'r) :

Thus, the solution in the region n < x <a + b must be related to the
solution (4) in the region -b < r < 0 by the Bloch theorem:

Ya<x<a+b=W(-b<x<0)etklath) (6)

The constants A, B, C, D are chosen so that ¥ and d¥/dx are
continuous at x = 0 and x = a . These are the usual quantum
mechanical boundary conditions in problems that involve square
potential wells. At x = 0,

A+B=C+D ... (7)

ik(A=B)=0Q(C=D) e, (8)

with Q from (4). At x = a, with the use of (6) for W(a) under the
barrier in terms of ¥(—b),

Aetka@ 4 Be~ika — (Ce=Qb 4 pe@b) giklath) 9)
ik(Ae'@ — Be~ka) = Q(Ce™ — pelb) eiklath) (10)

The four equations (7) to (10) have a solution only if the determinant
of the coefficients of A, B, C, D vanishes, yielding

2_1,2
[£=] sinh @b sin ka + cosh @b cos ka = cosk(a +b) ......(11)

when we pass to the limit b =0 and U, = oo in such a way
that Q?ba/2 = P, afinite quantity. In this limit Q > k and Qb «< 1.
Then equation (11) reduces to:

(P/ka)sinka + coska = coska ............ (12)
The ranges of K for which this equation has solutions are plotted in
Fig below:
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(P/Ka) sin Ka + cos Ka
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Figure 2 Plot of the function (P/ka) sinka + cos ka, for P =
3m/2 . The allowed values of the energy e are given by those ranges of

ka = (ng/hz)l/2 a for which the function lies between =+1 . For
other values of the energy there are no traveling wave or Bloch-like
solutions to the wave equation, so that forbidden gaps in the energy
spectrum are formed.

20 T T T
15— 7]
cl§ 7
/
S /%
o Vs
& /
0].-. 7
‘2 10— / =3
= >
= 7
= 7’
o 7
w //
SH g —
”~
-~
”~
-
- -
L=
0 —
T 277 37T 49T

ka

Figure 3 Plot of energy vs. wavenumber for the Kronig-Penney
potential, with P = 37 /2. Notice the energy gaps at ka =
T, 27, 3T, wev v ..



Number of orbitals in a band

Consider a linear crystal constructed of an even number N of
primitive cells of lattice constant a. In order to count states, we apply
periodic boundary conditions to the wavefunctions over the length of
the crystal. The allowed values of the electron wavevector k in the
first Brillouin zone are given by:

k = 0; -I_-Z—n ; i4—n ; ,M

L L L

We cut the series off at N /L = ™/, , for this is the zone boundary.
The point — Nm/L = — T/, , is not to be counted as an independent
point because it is connected by a reciprocal lattice vector with /.
The total number of points is exactly N, the number of primitive cells.

Each primitive cell contributes exactly one independent value of k to
each energy band. This result carries over into three dimensions. With
account taken of the two independent orientations of the electron spin,
there are 2N independent orbitals in each energy band.

If there is a single atom of valence, one in each primitive cell, the band
can be half filled with electrons. If each atom contributes two valence
electrons to the band, the band can be exactly filled. If there are two
atoms of valence, one in each primitive cell, the band can also be
exactly filled.



