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1.1 General Principles 

We now examine the general case of the motion of a particle in three dimensions. The vector form of the 

equation of motion for such a particle is  

                                                                   𝐹 =
𝑑𝑝

𝑑𝑡
               (1.1) 

in which 𝑝 = 𝑚𝑣 is the linear momentum of the particle. This vector equation is equivalent to three scalar 

equations in Cartesian coordinates. 

                                                                 𝐹𝑥 = 𝑚𝑥̈              (1.2) 

                                                                 𝐹𝑦 = 𝑚𝑦̈ 

                                                                 𝐹𝑧 = 𝑚𝑧̈ 
There is no general method for obtaining an analytic solution to the above equations of motion. It is rare 

that one knows the direct way in which 𝐹 depends on time. The simplest situation is one in which 𝐹 is 

known to be a function of spatial coordinates only. There are many slightly more complex situations, in 

which 𝐹 is a known function of coordinate derivatives as well. Such cases include projectile motion with 

air resistance and the motion of a charged particle in a static electromagnetic field Finally, 𝐹 may be an 

implicit function of time. A prime example of such a situation involves the motion of a charged particle in 

a time-varying electromagnetic field. 

The Work Principle 

Work done on a particle causes it to gain or lose kinetic energy. We would like to generalize the case of 

motion of a particle in one dimension to the case of three-dimensional motion. To do so, we first take the 

dot product of both sides of Equation 1.1 with the velocity 𝑣: 

                                                𝐹. 𝑣 =
𝑑𝑝

𝑑𝑡
∙ 𝑣 =

𝑑(𝑚𝑣)

𝑑𝑡
∙ 𝑣               (1.3) 

Because 𝑑(𝑣 ∙ 𝑣) 𝑑𝑡⁄ = 2𝑣 ∙ 𝑣̇, and assuming that the mass is constant, independent of the velocity of the 

particle, we may write Equation 1.3 as 

                                              𝐹. 𝑣 =
𝑑

𝑑𝑡
(

1

2
𝑚𝑣 ∙ 𝑣) =

𝑑𝑇

𝑑𝑡
               (1.4) 

in which 𝑇 is the kinetic energy, 𝑚𝑣2 2⁄ . Because 𝑣 = 𝑑𝑟 𝑑𝑡⁄ , we can rewrite Equation 1.4 and then 

integrate the result to obtain 

                                                           𝐹 ∙
𝑑𝑟

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
                          (1.5a)   

                                       ∫ 𝐹 ∙ 𝑑𝑟 = ∫ 𝑑𝑇 = 𝑇𝑓 − 𝑇𝑖 = ∆𝑇        (1.5b) 
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Figure 1. 1. The work done by a force 𝐹 is the line integral ∫ 𝐹 ∙ 𝑑𝑟
𝐵

𝐴
. 

 

The left-hand side of this equation is a line integral, or the integral of 𝐹𝑟𝑑𝑟, the component of 𝐹 parallel 

to the particle's displacement vector 𝑑𝑟. The integral is carried out along the path of the particle from 

some initial point in space A to some final point B. This situation is pictured in Figure1.1. The line integral 

represents the work done on the particle by the force 𝐹 as the particle moves along its trajectory from A 

to B. 

Conservative Forces and Force Fields 

The force acting on a particle were conservative, it could be derived as the derivative of a scalar potential 

energy function, 𝐹𝑥 = −𝑑𝑉(𝑥)/𝑑𝑥. This condition led us to the notion that the work done by such a force 

in moving a particle from point A to point B along the x-axis was ∫ 𝐹𝑥𝑑𝑥 = −∆𝑉 = 𝑉(𝐴) − 𝑉(𝐵), or equal 

to minus the change in the potential energy of the particle. The work done depended only upon the 

potential energy function evaluated at the endpoints of the motion. Moreover, because the work done 

was also equal to the change in kinetic energy of the particle, ∆𝑇 = 𝑇(𝐵) − 𝑇(𝐴), we were able to 

establish a general conservation of total energy principle, namely, 𝐸𝑡𝑜𝑡 = 𝑉(𝐴) + 𝑇(𝐴) = 𝑉(𝐴) +

𝑇(𝐵) = constant throughout the motion of the particle. This principle was based on the condition that 

the force acting on the particle was conservative. We would like to generalize this concept for a particle 

moving in three dimensions, and, more importantly, we would like to define just what is meant by the 

word conservative. The only way in which we could specify a unique value to the potential energy would 

be if the closed-loop work integral vanished. In such cases, the work done along a path from A to B would 

be path-independent and would equal both the potential energy loss and the kinetic energy gain. The 

total energy of the particle would be a constant, independent of its location in such a force field, therefore, 

we must find the constraint that a particular force must obey if its closed-loop work integral is to vanish.  



                                                                                                              Dr K.T. Hassan 
 Lecture 1                                                                                                            Physics Dep. 2nd

 Stage  

 

3 
Dr K.T. Hassan                                                                                                                                               Physics Dep. 2nd

 Stage 

 

Motion of particles 

in three dimensions 

Analytical  

Mechanic. 2 

To find the desired constraint, let us calculate the work done in taking a test particle counterclockwise 

around the rectangular loop of area ∆𝑥∆𝑦 from the point (x,y) and back again, as indicated in Figure1.2. 

We get the following result: 

 

Figure 1. 2. A nonconservative force field whose force components are Fx = −by and Fy = +bx 

 

                        𝑊 = ∮ 𝐹 ∙ 𝑑𝑟 

          = ∫ 𝐹𝑥(𝑦)𝑑𝑥 +
𝑥+∆𝑥

𝑥
∫ 𝐹𝑦(𝑥 + ∆𝑥)𝑑𝑦

𝑦+∆𝑦

𝑦
+ ∫ 𝐹𝑥(𝑦 + ∆𝑦)𝑑𝑥 + ∫ 𝐹𝑦(𝑥)𝑑𝑦

𝑦

𝑦+∆𝑦

𝑥

𝑥+∆𝑥
 

                          = ∫ (𝐹𝑦(𝑥 + ∆𝑥) − 𝐹𝑦(𝑥)) 𝑑𝑦 + ∫ (𝐹𝑥(𝑦) − 𝐹𝑥(𝑦 + ∆𝑦))𝑑𝑥
𝑥+∆𝑥

𝑥

𝑦+∆𝑦

𝑦
                (1.6) 

                          = (𝑏(𝑥 + ∆𝑥) − 𝑏𝑥)∆𝑦 + (𝑏(𝑦 + ∆𝑦) − 𝑏𝑦)∆𝑥 

                          = 2𝑏∆𝑥∆𝑦 

The work done is nonzero and is proportional to the area of the loop, ∆A = ∆𝑥 ∙ ∆𝑦, which was chosen in 

an arbitrary fashion. If we divide the work done by the area of the loop and take limits as ∆A → 0, we 

obtain the value 2𝑏. The result is dependent on the precise nature of this particular nonconservative force 

field. If we reverse the direction of one of the force components—say, let 𝐹𝑥 = +𝑏𝑦 (thus "destroying" 

the circulation of the force field but everywhere preserving its magnitude)— then the work done per unit 

area in traversing the closed loop vanishes. The resulting force field is conservative and is shown in Figure 

1.3. Clearly, the value of the closed-loop integral depends upon the precise way in which the vector force 

𝐹changes its direction as well as its magnitude as we move around on the 𝑥𝑦 plane.  
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Figure 1. 3. A conservative force field whose components are Fx = by and Fy = bx 

 

There is obviously some sort of constraint that 𝐹 must obey if the closed-loop work integral is to vanish. 

We can derive this condition of constraint by evaluating the forces at 𝑥 + ∆𝑥 and 𝑦 + ∆𝑦 using a Taylor 

expansion and then inserting the resultant expansion into the closed-loop work integral of Equation 1.6. 

The result follows: 

                                                 𝐹𝑥(𝑦 + ∆𝑦) = 𝐹𝑥(𝑦) +
𝜕𝐹𝑥

𝜕𝑦
∆𝑦  

                                                     𝐹𝑦(𝑥 + ∆𝑥) = 𝐹𝑦(𝑥) +
𝜕𝐹𝑦

𝜕𝑥
∆𝑥                         (1.7)                             

                                                 ∮ 𝐹 ∙ 𝑑𝑟 = ∫ (
𝜕𝐹𝑦

𝜕𝑥
∆𝑥)

𝑦+∆𝑦

𝑦
𝑑𝑦 − ∫ (

𝜕𝐹𝑥

𝜕𝑦
∆𝑦) 𝑑𝑥

𝑥+∆𝑥

𝑥
 

           = (
𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥

𝜕𝑦
) ∆𝑥∆𝑦 = 2𝑏∆𝑥∆𝑦                             (1.8)                   

This last equation contains the term(𝜕𝐹𝑦 𝜕𝑥 − 𝜕𝐹𝑥 𝜕𝑦)⁄⁄   whose zero or nonzero value represents the test 

we are looking for. If this term were identically equal to zero instead of 2𝑏, then the closed-loop work 

integral would vanish, which would ensure the existence of a potential energy function from which the 

force could be derived.  

This condition is a rather simplified version of a very general mathematical theorem called Stokes' 

theorem. It is written as 

∮ 𝐹 ∙ 𝑑𝑟 = ∫ 𝐹 ∙ 𝑛̂
𝑠

𝑑𝑎 

                                        𝑐𝑢𝑟𝑙 𝐹 = 𝑖 (
𝜕𝐹𝑧

𝜕𝑦
−

𝜕𝐹𝑦

𝜕𝑧
) + 𝑗 (

𝜕𝐹𝑥

𝜕𝑧
−

𝜕𝐹𝑧

𝜕𝑥
) + 𝑘 (

𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥

𝜕𝑦
)               (1.9) 
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The theoretical states that the closed-loop line integral of any vector function 𝐹 is equal to 𝑐𝑟𝑢𝑙 𝐹 ∙ 𝑛 𝑑𝑎 

integrated over a surface S surrounded by the closed loop. The vector 𝑛 is a unit vector normal to the 

surface-area integration element 𝑑𝑎. Its direction is that of the advance of a right-hand screw turned in 

the same rotational sense as the direction of traversal around the closed loop. In Figure.1.2, 𝑛 would be 

directed out of the paper. The surface would be the rectangular area enclosed by the dashed rectangular 

loop. Thus, a vanishing 𝑐𝑟𝑢𝑙 𝐹 ensures that the line integral of 𝐹 around a closed path is zero and, thus, 

that 𝐹 is a conservative force. 

1.1.2 The Potential Energy Function in Three-Dimensional Motion: The Del Operator 

Assume that we have a test particle subject to some force whose curl vanishes. Then all the components 

of 𝑐𝑟𝑢𝑙 𝐹 in Equation1. 9 vanish. We can make certain that the curl vanishes if we derive 𝐹 from a potential 

energy function 𝑉(𝑥, 𝑦, 𝑧) according to 

                                        𝐹𝑥 = −
𝜕𝑉

𝜕𝑥
          𝐹𝑦 = −

𝜕𝑉

𝜕𝑦
          𝐹𝑧 = −

𝜕𝑉

𝜕𝑧
                  (1.10) 

For example, the 𝑧 component of 𝑐𝑟𝑢𝑙 𝐹 becomes 

                   
𝜕𝐹𝑥

𝜕𝑦
= −

𝜕2𝑉

𝜕𝑦𝜕𝑥
        

𝜕𝐹𝑦

𝜕𝑥
= −

𝜕2𝑉

𝜕𝑥𝜕𝑦
= −

𝜕2𝑉

𝜕𝑦𝜕𝑥
         ∴

𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥

𝜕𝑦
= 0                (1.11) 

This last step follows if we assume that 𝑉 is everywhere continuous and differentiable. We reach the same 

conclusion for the other components of 𝑐𝑟𝑢𝑙 𝐹. One might wonder whether there are other reasons why 

𝑐𝑟𝑢𝑙 𝐹 might vanish, besides its being derivable from a potential energy function. However, 𝑐𝑟𝑢𝑙 𝐹 = 0 

is a necessary and sufficient condition for the existence of 𝑉(𝑥, 𝑦, 𝑧)  such that Equation 1.10 holds. 

We can now express a conservative force 𝐹 vectorially as 

                                                        𝐹 = −𝑖
𝜕𝑉

𝜕𝑥
− 𝑗

𝜕𝑉

𝜕𝑦
− 𝑘

𝜕𝑉

𝜕𝑧
              (1.12) 

This equation can be written more succinctly as 

                                                                                   𝐹 = −∇𝑉               (1.13) 

where we have introduced the vector operator del: 

                                                                  ∇𝑉 = 𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
          (1.14) 

The expression ∇𝑉 is also called the gradient of 𝑉 and is sometimes written grad 𝑉. Mathematically, the 

gradient of a function is a vector that represents the maximum spatial derivative of the function in 

direction and magnitude. Physically, the negative gradient of the potential energy function gives the 
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direction and magnitude of the force that acts on a particle located in a field created by other particles. 

The meaning of the negative sign is that the particle is urged to move in the direction of decreasing 

potential energy rather than in the opposite direction. This is illustrated in Figure 1.4. Here the potential 

energy function is plotted out in the form of contour lines representing the curves of constant potential 

The force at any point is always normal to the equipotential curve or surface passing through the point in 

question. 

 

Figure 1. 4. A force field represented by equipotential contour curves. 

We can express 𝑐𝑟𝑢𝑙 𝐹 using the del operator. Look at the components of 𝑐𝑟𝑢𝑙 𝐹 in Equation 1.9. They 

are the components of the vector ∇ × 𝐹. Thus, ∇ × 𝐹 = 𝑐𝑟𝑢𝑙 𝐹. The condition that a force be conservative 

can be written compactly as 

 ∇ × 𝐹 = 𝑖 (
𝜕𝐹𝑧

𝜕𝑦
−

𝜕𝐹𝑦

𝜕𝑧
) + 𝑗 (

𝜕𝐹𝑥

𝜕𝑧
−

𝜕𝐹𝑧

𝜕𝑥
) + 𝑘 (

𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥

𝜕𝑦
) = 0              (1.15) 

Furthermore, if ∇ × 𝐹 = 0, then 𝐹 can be derived from a scalar function 𝑉 by the operation 𝐹 = −∇𝑉, 

since ∇ × ∇V ≡ 0, or the 𝑐𝑟𝑢𝑙 of any gradient is identically 0.  

We are now able to generalize the conservation of energy principle to three dimensions. The work done 

by a conservative force in moving a particle from point A to point B can be written as 

∫ 𝐹 ∙
𝐵

𝐴

𝑑𝑟 = ∫ ∇
𝐵

𝐴

𝑉(𝑟) ∙ 𝑑𝑟 = − ∫
𝜕𝑉

𝜕𝑥

𝐵𝑥

𝐴𝑥

𝑑𝑥 − ∫
𝜕𝑉

𝜕𝑦

𝐵𝑥

𝐴𝑥

𝑑𝑦 − ∫
𝜕𝑉

𝜕𝑧

𝐵𝑥

𝐴𝑥

𝑑𝑧 

                  = − ∫ 𝑑𝑉(𝑟) = −∆𝑉 = 𝑉(𝐴) − 𝑉(𝐵)
𝐵

𝐴
                      (1.16) 

The last step illustrates the fact that ∇V ∙ dr is an exact differential equal to dV. The work done by any net 

force is always equal to the change in kinetic energy, so 
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∫ 𝐹 ∙
𝐵

𝐴

𝑑𝑟 = ∆𝑇 = −∆𝑉 

                                                                                ∴ ∆(𝑇 + 𝑉) = 0                             (1.17) 

∴ 𝑇(𝐴) + 𝑉(𝐴) = 𝑇(𝐵) + 𝑉(𝐵) = 𝐸 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

And we arrived at the desired law of conservation of total energy. If 𝐹́ is a nonconservative force, it cannot 

be set equal to −∇V. The work increase 𝐹́ ∙ 𝑑𝑟 is not an exact differential and cannot be equated to −𝑑V. 

In those cases where both conservative forces F and nonconservative forces 𝐹́ are present, the total work 

increment is (𝐹 + 𝐹́) ∙ 𝑑𝑟 = −𝑑𝑉 + 𝐹́ ∙ 𝑑𝑟 = 𝑑𝑇, and the generalized form of the work energy theorem 

becomes 

∫ 𝐹́ ∙
𝐵

𝐴

𝑑𝑟 = ∆(𝑇 + 𝑉) = ∆𝐸                      (1.18) 

The total energy 𝐹does not remain a constant throughout the motion of the particle but increases or 

decreases depending upon the nature of the nonconservative force 𝐹́. In the case of dissipative forces 

such as friction and air resistance, the direction of. 𝐹́ is always opposite the motion; hence, 𝐹́ ∙ 𝑑𝑟 is 

negative, and the total energy of the particle decreases as it moves through space. 

 

Given the two-dimensional potential energy function 𝑉(𝑟) = 𝑉𝑜 −
1

2
𝑘𝛿2𝑒−𝑟2 𝛿2⁄  where 𝑟 = 𝑖𝑥 + 𝑗𝑦 and 

𝑉𝑜, 𝑘, and 𝛿 are constants, find the force function. 

Solution: 

We first write the potential energy function as a function of 𝑥 and 𝑦, 

𝑉(𝑥, 𝑦) = 𝑉𝑜 −
1

2
𝑘𝛿2𝑒−(𝑥2+𝑦2) 𝛿2⁄  

and then apply the gradient operator: 

𝐹 = −∇𝑉 = − (𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
) 𝑉(𝑥, 𝑦) 

 = −𝑘(𝑖𝑥 + 𝑗𝑦)𝑒−(𝑥2+𝑦2) 𝛿2⁄  

 = −𝑘𝑒−𝑟2 𝛿2⁄  

  

Example 1 



                                                                                                              Dr K.T. Hassan 
 Lecture 1                                                                                                            Physics Dep. 2nd

 Stage  

 

8 
Dr K.T. Hassan                                                                                                                                               Physics Dep. 2nd

 Stage 

 

Motion of particles 

in three dimensions 

Analytical  

Mechanic. 2 

  

Suppose a particle of mass 𝑚 is moving in the above force field, and at time 𝑡 = 0 the particle passes 

through the origin with speed 𝑣𝑜. What will the speed of the particle be at some small distance away from 

the origin given by 𝑟 = 𝑒𝑟∆, where ∆≪ 𝛿? 

Solution: 

The force is conservative, because a potential energy function exists. Thus, the total energy 𝐸 = 𝑇 + 𝑉 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

𝐸 =
1

2
𝑚𝑣2 + 𝑉(𝑟) =

1

2
𝑚𝑣𝑜

2 + 𝑉(0) 

and solving for 𝑣, we obtain 

𝑣2 = 𝑣𝑜
2 +

2

𝑚
[𝑉(0) − 𝑉(𝑟)] 

 = 𝑣𝑜
2 +

2

𝑚
[(𝑉𝑜

1

2
𝑘𝛿2) − (𝑉𝑜 −

1

2
𝑘𝛿2𝑒−∆2 𝛿2⁄ )] 

 ≈ 𝑣𝑜
2 −

𝑘𝛿2

𝑚
[1 − 𝑒−∆2 𝛿2⁄ ] 

 = 𝑣𝑜
2 −

𝑘𝛿2

𝑚
[1 − (1 − ∆2 𝛿2)⁄ ] 

 

The potential energy is a quadratic function of the displacement from the origin for small displacements, 

so this solution reduces to the conservation of for the simple harmonic oscillator. 

 

 

A particle of mass 𝑚 moving in three dimensions under the potential function 𝑉(𝑥, 𝑦, 𝑧)  =  𝑎𝑥 +  𝛽𝑦2  +  𝛾𝑧3 
has speed 𝑣𝑜  when it passes through the origin. 
(a) What will its speed be if and when it passes through the point (1,1,1)?  
(b) If the point (1, 1, 1) is a turning point in the motion (𝑣 =  0), what is 𝑣𝑜? 
(c) What are the component differential equations of motion of the particle? 

(Note: It is not necessary to solve the differential equations of motion in this problem.)  H.W 

 

 

 

Example 2 

Example 3 
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Show that the variation of gravity with height can be accounted for approximately by the following 
potential energy function: 

𝑉 = 𝑚𝑔𝑧 (1 −
𝑧

𝑟𝑒
) 

in which re is the radius of the Earth. Find the force given by the above potential function. From this find 
the component differential equations of motion of a projectile under such a force. If the vertical 

component of the initial velocity is how high does the projectile go?  H.W 

 

1.2 Forces of the Separable Type: Projectile Motion 

A Cartesian coordinate system can be frequently chosen such that the components of a force field 

involve the respective coordinates alone, that is, 

                                                            𝐹 = 𝑖𝐹𝑥(𝑥) + 𝑗𝐹𝑦 (𝑦) + 𝑘𝐹𝑧(𝑧)               (1.19) 

Forces of this type are separable. The 𝑐𝑟𝑢𝑙 of such a force is identically zero: 

                                                            ∇ × 𝐹 = |

𝑖 𝑗 𝑘

𝜕 𝜕𝑥⁄ 𝜕 𝜕𝑦⁄ 𝜕 𝜕𝑧⁄

𝐹𝑥(𝑥) 𝐹𝑦(𝑦) 𝐹𝑧(𝑧)
|              (1.20) 

 

No Air Resistance 

For simplicity, we first consider the case of a projectile moving with no air resistance. Only one force, 

gravity, acts on the projectile, and, consistent with Galileo's observations as we shall see, it affects only 

its vertical motion. Choosing the z-axis to be vertical, we have the following equation of motion: 

                                                                             𝑚 =
𝑑2𝑟

𝑑𝑡2 = −𝑘𝑚𝑔                 (1.21) 

In the case of projectiles that don't rise too high or travel too far, we can take the acceleration of gravity, 

g, to be constant. Then the force function is conservative and of the separable type, because it is a special 

case of Equation 1.19. 𝑣𝑜 is the initial speed of the projectile, and the origin of the coordinate system is 

its initial position. Because there are no horizontally directed forces acting on the projectile, the motion 

occurs solely in the 𝑥𝑧 vertical plane. Thus, the position of the projectile at any time is (see Figure1.5) 

Example 4 
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Figure 1. 5. The parabolic path of a projectile. 

 

                                                                        𝑟 = 𝑖𝑥 + 𝑘𝑧                     (1.22) 

The speed of the projectile can be calculated as a function of its height, 𝑧, using the energy equation 

(Equation 1.17) 

                                                                 
1

2
𝑚(𝑥̇2 + 𝑧̇2) + 𝑚𝑔𝑧 =

1

2
𝑚𝑣𝑜

2                      (1.23) 

or equivalently,                                            𝑣2 = 𝑣𝑜
2 − 2𝑔𝑧                                         (1.23b) 

We can calculate the velocity of the projectile at any instant of time by integrating Equation 1.21 

                                                                           𝑣 =
𝑑𝑟

𝑑𝑡
= −𝑘𝑔𝑡 + 𝑣𝑜                           (1.24a) 

 The constant of integration is the initial velocity 𝑣𝑜. In terms of unit vectors, the velocity is 𝑣 

                                                                   𝑣 = 𝑖𝑣𝑜𝑐𝑜𝑠𝛼 + 𝑘(𝑣𝑜𝑠𝑖𝑛𝛼 − 𝑔𝑡)                  (1.24b) 

Integrating once more yields the position vector 

 𝑟 = −𝑘
1

2
𝑔𝑡2 + 𝑣𝑜𝑡 + 𝑟𝑜                                (1.25a) 

The constant of integration is the initial position of the projectile, 𝑟𝑜, which is equal to zero; therefore, in 

terms of unit vectors, Equation 1.25a becomes 

                                                       𝑟 = 𝑖(𝑣𝑜𝑐𝑜𝑠𝛼)𝑡 + 𝑘 ((𝑣𝑜𝑠𝑖𝑛𝛼)𝑡 −
1

2
𝑔𝑡2)               (1.25b) 

In terms of components, the position of the projectile at any instant of time is 

         𝑥 = 𝑥̇𝑜𝑡 = (𝑣𝑜𝑐𝑜𝑠𝛼)𝑡 

  𝑦 = 𝑦̇𝑜𝑡 ≡ 0                                                                   (1.25c) 
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 𝑧 = 𝑧̇𝑜𝑡 −
1

2
𝑔𝑡2 = (𝑣𝑜𝑠𝑖𝑛𝛼)𝑡

1

2
𝑔𝑡2                               

𝑥̇𝑜 = 𝑣𝑜𝑐𝑜𝑠𝛼, 𝑦̇𝑜 = 0, and 𝑧̇𝑜 = 𝑣𝑜𝑠𝑖𝑛𝛼 are the components of the initial velocity 𝑣𝑜. 

We can now show, as Galileo did in 1609, that the path of the projectile is a parabola. We find 𝑧(𝑥) by 

using the first of Equations 1.25c to solve fort as a function of 𝑥 and then substitute the resulting 

expression in the third of Equations 1.25c 

                                                                    𝑡 =
𝑥

𝑣𝑜𝑐𝑜𝑠𝛼
                                            (1.26) 

                                                         𝑧 = (𝑡𝑎𝑛𝛼)𝑥 − (
𝑔

2𝑣𝑜
2𝑐𝑜𝑠2𝛼

) 𝑥2                      (1.27)   

Equation 1.27 is the equation of a parabola and is shown in Figure 1.5 

 

The maximum height obtained by the projectile 

We can calculate the maximum height of the projectile using Equation 1.23b and noting that at maximum 

height the vertical component of the velocity of the projectile is zero so that its velocity is in the horizontal 

direction and equal to the constant horizontal component, 𝑣𝑜𝑐𝑜𝑠𝛼. Thus 

                                                                        𝑣𝑜
2𝑐𝑜𝑠2𝛼 = 𝑣𝑜

22𝑔𝑧𝑚𝑎𝑥                                (1.28) 

We solve this to obtain 

                                                                         𝑧𝑚𝑎𝑥 =
𝑣𝑜𝑠𝑖𝑛2𝛼

2𝑔
                                          (1.29)    

The time it takes to reach maximum height can be obtained from Equation 1.24b where we again make 

use of the fact that at maximum height, the vertical component of the velocity vanishes, so 

𝑣𝑜𝑠𝑖𝑛𝛼 − 𝑔𝑡𝑚𝑎𝑥 = 0 

Or  𝑡𝑚𝑎𝑥 =
𝑣𝑜𝑠𝑖𝑛𝛼

𝑔
                                (1.30)   

We can obtain the total time of flight 𝑇 of the projectile by setting 𝑧 = 0 in the last of Equations 1.25c, 

which yields 

                                                                   𝑇 =
2𝑣𝑜𝑠𝑖𝑛𝛼

𝑔
                                           (1.31) 

This is twice the time it takes the projectile to reach maximum height. This indicates that the upward flight 

of the projectile to the apex of its trajectory is symmetrical to its downward flight away from it.  
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Finally, we calculate the range of the projectile by substituting the total time of flight, 𝑇, into the first of 

Equations 1.25c, obtaining 

                                                                𝑅 = 𝑥 =
𝑣𝑜

2𝑠𝑖𝑛22𝛼

𝑔
                            (1.32) 

𝑅 has its maximum value 𝑅𝑚𝑎𝑥 = 𝑣𝑜
2 𝑔⁄  at 𝛼 = 45° 

Linear Air Resistance 

In this case, the motion does not conserve total energy, which continually diminishes during the flight of 

the projectile. To solve the problem analytically, we assume that the resisting force varies linearly with 

the velocity. To simplify the resulting equation of motions, we take the constant of proportionality to be 

𝑚𝛾 where 𝑚 is the mass of the projectile. The equation of motion is then 

           𝑚
𝑑2𝑟

𝑑𝑡2 = −𝑚𝛾𝑣 − 𝑘𝑚𝑔                                            (1.33) 

Upon cancelling 𝑚′𝑠 , the equation simplifies to 

           
𝑑2𝑟

𝑑𝑡2 = −𝛾𝑣 − 𝑘𝑔                                                        (1.34) 

Before integrating, we write Equation 1.34 in component form 

              𝑥̈ = −𝛾𝑥̇ 

              𝑦̈ = −𝛾𝑦̇                                                               (1.35) 

 𝑧̈ = −𝛾𝑧̇ − 𝑔 

We see that the equations are separated; therefore, each can be solved individually. We can write down 

the solutions immediately, noting that here 𝛾 = 𝑐1/𝑚, 𝑐1 being the linear drag coefficient. The results 

are 

                                                                             𝑥̇ = 𝑥𝑜𝑒−𝛾𝑡 
                                                                             𝑦̇ = 𝑦𝑜𝑒−𝛾𝑡                                               (1.35) 

                                                                             𝑧̇ = 𝑧𝑜𝑒−𝛾𝑡 −
𝑔

𝛾
(1 − 𝑒−𝛾𝑡) 

for the velocity components. As before, we orient the coordinate system such that the x-axis lies along 

the projection of the initial velocity onto the 𝑥𝑦 horizontal plane. Then 𝑦̇ = 𝑦̇𝑜 = 0 and the motion is 

confined to the 𝑥𝑧 vertical plane. Integrating once more, we obtain the position coordinates 

                                                                  𝑥 =
𝑥̇𝑜

𝛾
(1 − 𝑒−𝛾𝑡)                                              (1.36)                     

𝑧 = (
𝑧̇𝑜

𝛾
+

𝑔

𝛾2
) (1 − 𝑒−𝛾𝑡) −

𝑔

𝛾
𝑡 

We have taken the initial position of the projectile to be zero, the origin of the coordinate system. This 

solution can be written vectorially as 

                                                                𝑟 = (
𝑣𝑜

𝛾
+

𝑘𝑔

𝛾2) (1 − 𝑒−𝛾𝑡) − 𝑘
𝑔𝑡

𝛾
                       (1.37) 
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Contrary to the case of zero air resistance the path of the projectile is not a parabola, but rather a curve 

that lies below the corresponding parabolic trajectory. This is illustrated in Figure 1.6. Inspection of the 𝑥 

equation shows that, for large 𝑡, the value of 𝑥 approaches the limiting value 

                                                                                     𝑥 →
𝑥̇𝑜

𝛾
                                               (1.38)       

 
Figure 1. 6. Comparison of the paths of a projectile with and without air resistance. 
 

Horizontal Range 

The horizontal range of a projectile with linear air drag is found by setting 𝑧 = 0 in the second of Eq. 1.36 

and then eliminating t among the two equations. From the first of Eq. 1.36, we have 1 − 𝛾𝑥 𝑥𝑜̇⁄ = 𝑒−𝛾𝑡, 

so 𝑡 = −𝛾−1 ln(1 − 𝛾𝑥 𝑥𝑜̇⁄ ), thus the horizontal range 𝑥𝑚𝑎𝑥 is given by implicit expression 

   

                                               (
𝑧̇𝑜

𝛾
+

𝑔

𝛾2)
𝛾𝑥𝑚𝑎𝑥

𝑥𝑜̇
+

𝑔

𝛾2 ln (1 −
𝛾𝑥𝑚𝑎𝑥

𝑥𝑜̇
) = 0                       (1.39) 

 

This is a transcendental equation and must be solved by some approximation method to find 𝑥ℎ. We can 

expand the logarithmic term by use of the series 

                                                        ln(1 − 𝑢) = −𝑢 −
𝑢2

2
−

𝑢3

3
− ⋯                               (1.40) 

which is valid for |𝑢| < 1. With 𝑢 = 𝛾𝑥𝑚𝑎𝑥 𝑥𝑜̇⁄  it is left as a problem to show that this leads to the 

following expression for the horizontal range: 

                                                        𝑥𝑚𝑎𝑥 =
2𝑥𝑜̇𝑧𝑜̇

𝑔
−

8𝑥𝑜̇𝑧̇𝑜
2

3𝑔2
𝛾 + ⋯                            (1.41a) 

If the projectile is fired at angle of elevation 𝛼 with initial speed 𝑣𝑜, then 𝑥𝑜̇ = 𝑣𝑜𝑐𝑜𝑠𝛼, 𝑧𝑜̇ = 𝑣𝑜𝑠𝑖𝑛𝛼 and 

2𝑥𝑜̇𝑧𝑜̇ = 2𝑣𝑜
2𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼 = 𝑣𝑜

2𝑠𝑖𝑛2𝛼. An equivalent expression is then 

                                                  𝑥𝑚𝑎𝑥 =
𝑣𝑜

2𝑠𝑖𝑛2𝛼

𝑔
−

4𝑣𝑜
3𝑠𝑖𝑛2𝛼 𝑠𝑖𝑛𝛼

3𝑔2
𝛾 + ⋯             (1.41b) 
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The first term on the right is the range in the absence of air resistance. The remainder is the decrease due 

to air resistance. 

1.3 The Harmonic Oscillator in Two and Three Dimensions 

Consider the motion of a particle subject to a linear restoring force that is always directed toward a fixed 

point, the origin of our coordinate system. Such a force can be represented by the expression 

                                                                     𝐹 = −𝑘𝑟                                     (1.42) 

Accordingly, the differential equation of motion is simply expressed as 

                                                                   𝑚
𝑑2𝑟

𝑑𝑡2
= −𝑘𝑟                                (1.42) 

The situation can be represented approximately by a particle attached to a set of elastic springs as shown 

in Figure1.7. This is the three-dimensional generalization of the linear oscillator. Equation 1.42 is the 

differential equation of the linear isotropic oscillator. 

 

Figure 1. 7. A model of a three-dimensional harmonic oscillator. 

The Two-Dimensional Isotropic Oscillator 

In the case of motion in a single plane, Eq. 1.42 is equivalent to the two component equations 

                                                                         𝑚𝑥̈ = −𝑘𝑥                          (1.43) 

                                                                         𝑚𝑦̈ = −𝑘𝑦    
These are separated, and we can immediately write down the solutions in the form 

                           𝑥 = 𝐴𝑐𝑜𝑠(𝑤𝑡 + 𝛼)         𝑦 = 𝐵𝑐𝑜𝑠(𝑤𝑡 + 𝛽)                         (1.44) 

In which 

                                                                      𝑤 = (
𝑘

𝑚
)

1 2⁄

                             (1.45)   
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The constants of integration 𝐴, 𝐵, 𝛼 and 𝛽 are determined from the initial conditions in any given case. 

To find the equation of the path, we eliminate the time 𝑡 between the two equations. To do this, let us 

write the second equation in the form 

                                                                         𝑦 = 𝐵𝑐𝑜𝑠(𝑤𝑡 + 𝛼 + ∆)                            (1.46) 

Where                                                                ∆= 𝛽 − 𝛼                                                  (1.47) 

Then                             𝑦 = 𝐵[𝑐𝑜𝑠(𝑤𝑡 + 𝛼)𝑐𝑜𝑠∆ − sin (𝑤𝑡 + 𝛼)𝑠𝑖𝑛∆]                      (1.46) 

 Combining the above with the first of Eq. 1.44, we then have 

                                                  
𝑦

𝐵
=

𝑥

𝐴
𝑐𝑜𝑠∆ − [1 −

𝑥2

𝑦2
]

1 2⁄

𝑠𝑖𝑛∆                      (1.47) 

and upon transposing and squaring terms, we obtain 

                                                       
𝑥2

𝐴2
− 𝑥𝑦

2𝑐𝑜𝑠∆

𝐴𝐵
+

𝑦2

𝐵2
= 𝑠𝑖𝑛2∆                        (1.48) 

which is a quadratic equation in 𝑥 and 𝑦. Now the general quadratic 

                                                         𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 = 𝑓                            (1.49) 

represents an ellipse, a parabola, or a hyperbola, depending on whether the discriminant 

                                                         𝑏2 − 4𝑎𝑐                                                                        (1.50) 

is negative, zero, or positive, respectively. In our case the discriminant is equal to −(2𝑠𝑖𝑛 ∆ 𝐴𝐵)⁄ 2
, which 

is negative, so the path is an ellipse as shown in Figure 1.8. 

In particular, if the phase difference ∆ is equal to 𝜋 2⁄ , then the equation of the path reduces to the 

equation 

                                                                  
𝑥2

𝐴2
+

𝑦2

𝐵2
= 1                                     (1.51) 

which is the equation of an ellipse whose axes coincide with the coordinate axes. On the other hand, if 

the phase difference is 0 or 𝜋 then the equation of the path reduces to that of a straight line, namely, 

                                                                                𝑦 = ±
𝐵

𝐴
𝑥                                      (1.52)               
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Figure 1. 8. The elliptical path of a two-dimensional isotropic oscillator 

The positive sign is taken if ∆ =  0, and the negative sign, if ∆ =  𝜋 the general case it is possible to show 

that the axis of the elliptical path is inclined to the 𝑥-axis by the angle Ψ where 

                                                                           𝑡𝑎𝑛2𝜓 =
2𝐴𝐵𝑐𝑜𝑠Δ

𝐴2−𝐵2
                               (1.53) 

The derivation is left as an exercise. 

 

The Three-Dimensional Isotropic 

Harmonic Oscillator 

In the case of three-dimensional motion, the differential equation of motion is equivalent to the three 

equations 

                          𝑚𝑥̈ = −𝑘𝑥         𝑚𝑦̈ = −𝑘𝑦        𝑚𝑧̈ = −𝑘𝑧                 (1.54)    

which are separated. Hence, the solutions maybe written in the form of Eq. 1.44, or, alternatively, we may 

write  

𝑥 = 𝐴1𝑠𝑖𝑛𝑤𝑡 + 𝐵1𝑐𝑜𝑠𝑤𝑡 

                                                                       𝑦 = 𝐴2𝑠𝑖𝑛𝑤𝑡 + 𝐵2𝑐𝑜𝑠𝑤𝑡                         (1.55a)     

𝑧 = 𝐴3𝑠𝑖𝑛𝑤𝑡 + 𝐵3𝑐𝑜𝑠𝑤𝑡 

 

The six constants of integration are determined from the initial position and velocity of the particle. Now 

Eq.1.54 can be expressed vectorially as 

                                                                    𝑟 = 𝐴 𝑠𝑖𝑛𝑤𝑡 + 𝐵 𝑐𝑜𝑠𝑤𝑡                            (1.55b)   

in which the components of 𝐴 are 𝐴1, 𝐴2, and 𝐴3, and similarly for 𝐵. It is clear that the motion takes 

place entirely in a single plane, which is common to the two constant vectors 𝐴 and 𝐵, and that the path 
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of the particle in that plane is an ellipse, as in the two dimensional case. Hence, the analysis concerning 

the shape of the elliptical path under the two-dimensional case also applies to the three-dimensional case. 

 

Non-isotropic Oscillator 

The restoring force is independent of the direction of the displacement. If the magnitudes of the 

components of the restoring force depend on the direction of the displacement, we have the case of the 

non-isotropic oscillator. For a suitable choice of axes, the differential equations for the non-isotropic case 

can be written 

                                                                         𝑚𝑥̈ = −𝑘1𝑥                          

                                                                         𝑚𝑦̈ = −𝑘2𝑦                    (1.56) 

                                                                         𝑚𝑧̈ = −𝑘3𝑦 

Here we have a case of three different frequencies of oscillation, 𝑤1 = √𝑘1 𝑚⁄ ,  𝑤2 = √𝑘2 𝑚⁄  , and 𝑤3 =

√𝑘3 𝑚⁄  and the motion is given by the solutions 

𝑥 = 𝐴𝑐𝑜𝑠(𝑤1𝑡 + 𝛼) 

                                                                           𝑦 = 𝐵𝑐𝑜𝑠(𝑤2𝑡 + 𝛽)                          (1.57)     

𝑧 = 𝐶𝑐𝑜𝑠(𝑤3𝑡 + 𝛾) 

Again, the six constants of integration in the above equations are determined from the initial conditions. 

The resulting oscillation of the particle lies entirely within a rectangular box (whose sides are 2𝐴, 2𝐵, and 

2𝐶) centered on the origin. In the event that 𝑤1, 𝑤2, and 𝑤3, are commensurate—that is, if 

                                                                

                                                                         
𝑤1

𝑛1
=

𝑤2

𝑛2
=

𝑤3

𝑛3
                              (1.58)   

 

where 𝑛1, 𝑛2, and 𝑛3 are integers—the path, called a Lissajous figure, is closed, because after a time 

2𝜋𝑛1 𝑤1⁄ = 2𝜋𝑛2 𝑤2 = 2𝜋𝑛3 𝑤3⁄⁄  the particle returns to its initial position and the motion is repeated 

 

Energy Considerations 

we showed that the potential energy function of the one-dimensional harmonic oscillator is quadratic in 

the displacement, 𝑉(𝑥) =
1

2
𝑘𝑥2. For the general three-dimensional case, it is easy to verify that 

                                                  𝑉(𝑥, 𝑦, 𝑧) =
1

2
𝑘1𝑥2 +

1

2
𝑘2𝑦2 +

1

2
𝑘3𝑧2)                 (1.59) 

Because 𝐹𝑥 = − 𝜕𝑉 𝜕𝑥 = −𝑘1𝑥⁄  and similarly for 𝐹𝑦 and 𝐹𝑧. If 𝑘1 = 𝑘2 = 𝑘3 = 𝑘, we have the isotropic 

case and  

                                                  𝑉(𝑥, 𝑦, 𝑧) =
1

2
𝑘(𝑥2 + 𝑦2 + 𝑧2) =

1

2
𝑘𝑟2                 (1.60) 
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The total energy in the isotropic case is then given by the simple expression 

                                                           
1

2
𝑚𝑣2 +

1

2
𝑘𝑟2 = 𝐸                                          (1.61)   

 

A particle of mass m moves in two dimensions under the following potential energy function:  𝑉(𝑟) =

1

2
𝑘(𝑥2 + 4𝑦2) Find the resulting motion, given the initial condition at 𝑡 = 0: 𝑥 = 𝑎, 𝑦 = 0, 𝑥̇ = 0, 𝑦̇ = 𝑣𝑜 

Solution 

This is a non-isotropic oscillator potential. The force function is 

𝐹 = −∇𝑉 = −𝑖𝑘𝑥 − 𝑗4𝑘𝑦 = 𝑚𝑟̈ 

The component differential equations of motion are then 

                                                              𝑚𝑥̈ + 𝑘𝑥 = 0     𝑚𝑦̈ + 4𝑘𝑦 = 0 

The 𝑥-motion has angular frequency 𝑤 = (𝑘 𝑚)⁄ 1 2⁄
while the 𝑦-motion has angular frequency just twice 

that, namely, 𝑤𝑦 = (4𝑘 𝑚)⁄ 1 2⁄
= 2𝑤. We shall write the general solution in the form 

𝑥 = 𝐴1 cos 𝑤𝑡 + 𝐵1 sin 𝑤𝑡 

𝑌 = 𝐴2 cos 2𝑤𝑡 + 𝐵2 sin 2𝑤𝑡 

 

To use the initial condition we must first differentiate with respect to t to find the general expression for 

the velocity components: 

𝑥̇ = −𝐴1𝑤 sin 𝑤𝑡 + 𝐵1𝑤 cos 𝑤𝑡 

𝑦̇ = −2𝐴2𝑤 sin 2𝑤𝑡 + 2𝐵1𝑤 cos 2𝑤𝑡 

 

Thus, at 𝑡 =  0, we see that the above equations for the components of position and velocity reduce to 

            𝑎 = 𝐴1             0 = 𝐴2       0 = 𝐵1𝑤      𝑣0 = 2𝐵2𝑤 

These equations give directly the values of the amplitude coefficients 𝐴1 = 𝑎, , 𝐴2 = 𝐵1 = 0, and 𝐵2 =

𝑣𝑜 2𝑤⁄ , so the final equations for the motion are 

                                𝑥 = 𝑎 cos 𝑤𝑡 

𝑦 =
𝑣𝑜

2𝑤
sin 2𝑤𝑡 

The path is a Lissajous figure having the shape of a figure-eight as shown in Figure 1.9. 

Example 5 
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Figure 1. 9. A Lissajous figure. 

 

      


