1.3 DOT PRODUCT; PROJECTIONS

1.3.1 Definition of the Dot Product

Definition If $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are vectors in 2-space, then the *dot product* of \mathbf{u} and \mathbf{v} is written as $\mathbf{u} \cdot \mathbf{v}$ and is defined as $\langle \mathbf{u} \cdot \mathbf{v} \rangle = u_1 v_1 + u_2 v_2$ Similarly, if $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ are vectors in 3-space, then their dot product

is defined as $\langle \mathbf{u} \cdot \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$

• In words, the dot product of two vectors is formed by multiplying their corresponding components and adding the resulting products. Note that the dot product of two vectors is a scalar.

Example 1.12

$$\langle 3, 5 \rangle \cdot \langle -1, 2 \rangle = 3(-1) + 5(2) = 7 \langle 2, 3 \rangle \cdot \langle -3, 2 \rangle = 2(-3) + 3(2) = 0 \langle 1, -3, 4 \rangle \cdot \langle 1, 5, 2 \rangle = 1(1) + (-3)(5) + 4(2) = -6$$

Here are the same computations expressed another way:

$$(3\mathbf{i} + 5\mathbf{j}) \cdot (-\mathbf{i} + 2\mathbf{j}) = 3(-1) + 5(2) = 7$$

(2\mathbf{i} + 3\mathbf{j}) \cdot (-3\mathbf{i} + 2\mathbf{j}) = 2(-3) + 3(2) = 0
(\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) \cdot (\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}) = 1(1) + (-3)(5) + 4(2) = -6

1.3.2 Algebraic Properties of the Dot Product

Theorem If **u**, **v**, and **w** are vectors in 2- or 3-space and k is a scalar, then:

(a)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

(b)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

(c)
$$k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$$

$$(d) \quad \mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$$

(e)
$$\mathbf{0} \cdot \mathbf{v} = 0$$

1.3.3 Angle between Vectors

Suppose that **u** and **v** are nonzero vectors in 2space or 3-space that are positioned so their initial points coincide. We define the *angle between* **u** *and* **v** to be the angle θ determined by the vectors that satisfies the condition $0 \le \theta \le \pi$ (Figure 1-21). In 2-space, θ is the smallest counter clockwise angle through which one of the vectors can be rotated until it aligns with the other.

Figure 1-21

Theorem If **u** and **v** are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Example 1.13 Find the angle between the vector $\mathbf{u} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and

(a)
$$\mathbf{v} = -3\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$$
 (b) $\mathbf{w} = 2\mathbf{i} + 7\mathbf{j} + 6\mathbf{k}$ (c) $\mathbf{z} = -3\mathbf{i} + 6\mathbf{j} - 6\mathbf{k}$

Solution (a).

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{-11}{(3)(7)} = -\frac{11}{21}$$

$$\theta = \cos^{-1}\left(-\frac{11}{21}\right) \approx 2.12 \text{ radians} \approx 121.6^{\circ}$$

Solution (b).

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{u}\| \|\mathbf{w}\|} = \frac{0}{\|\mathbf{u}\| \|\mathbf{w}\|} = 0$$

Thus, $\theta = \pi/2$, which means that the vectors are perpendicular.

Solution (c).

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{z}}{\|\mathbf{u}\| \|\mathbf{z}\|} = \frac{-27}{(3)(9)} = -1$$

Thus, $\theta = \pi$, which means that the vectors are oppositely directed. (In retrospect, we could have seen this without computing θ , since $\mathbf{z} = -3\mathbf{u}$.)

Figure 1-22

1.3.4 Interpreting the Sign of the Dot Product

Notes:

- The terms "perpendicular," "orthogonal," and "normal" are all commonly used to describe geometric objects that meet at right angles.
- Although the zero vector does not make a well-defined angle with other vectors, we will consider 0 to be orthogonal to all vectors. This convention allows us to say that u and v are orthogonal vectors if and only if u . v = 0, and makes Formula (a) valid if u or v (or both) is zero.

1.3.5 Direction Angles

In an *xy*-coordinate system, the direction of a nonzero vector **v** is completely determined by the angles α and β between **v** and the unit vectors **i** and **j** (Figure 1-23), and in an *xyz*-coordinate system the direction is completely determined by the angles α , β , and γ between **v** and the unit vectors **i**, **j**, and **k** (Figure 1-23).

In both 2-space and 3-space the angles between a nonzero vector v and the vectors i, j, and k are called the *direction angles* of v, and the cosines of those angles are called the *direction cosines* of v.

Theorem The direction cosines of a nonzero vector $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ are

$$\cos \alpha = \frac{v_1}{\|\mathbf{v}\|}, \quad \cos \beta = \frac{v_2}{\|\mathbf{v}\|}, \quad \cos \gamma = \frac{v_3}{\|\mathbf{v}\|}$$

Example 1-14 Find the direction cosines of the vector $\mathbf{v} = 2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$, and approximate the direction angles to the nearest degree.

Solution. First we will normalize the vector **v** and then read off the components. We have

$$\|\mathbf{v}\| = \sqrt{4 + 16 + 16} = 6$$
, so that $\mathbf{v}/\|\mathbf{v}\| = \frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$. Thus,
 $\cos \alpha = \frac{1}{3}$, $\cos \beta = -\frac{2}{3}$, $\cos \gamma = \frac{2}{3}$

With the help of a calculating utility we obtain

$$\alpha = \cos^{-1}(\frac{1}{3}) \approx 71^{\circ}, \quad \beta = \cos^{-1}(-\frac{2}{3}) \approx 132^{\circ}, \quad \gamma = \cos^{-1}(\frac{2}{3}) \approx 48^{\circ}$$

Example 1-15 Find the angle between a diagonal of a cube and one of its edges.

Solution. Assume that the cube has side *a*, and introduce a coordinate system as shown in Figure 1-24. In this coordinate system the vector

Figure 1-24

is a diagonal of the cube and the unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} run along the edges. By symmetry, the diagonal makes the same angle with each edge, so it is sufficient to find the angle between \mathbf{d} and \mathbf{i} (the direction angle α). Thus,

$$\cos \alpha = \frac{\mathbf{d} \cdot \mathbf{i}}{\|\mathbf{d}\| \|\mathbf{i}\|} = \frac{a}{\|\mathbf{d}\|} = \frac{a}{\sqrt{3a^2}} = \frac{1}{\sqrt{3}}$$
$$\alpha = \cos^{-1} \left(\frac{1}{\sqrt{3}}\right) \approx 0.955 \text{ radian} \approx 54.7^{\circ}$$

1.3.1 Decomposing Vectors into Orthogonal Components

In many applications it is desirable to "decompose" a vector into a sum of two orthogonal vectors with convenient specified directions. For example, Figure 1-25 shows a block on an inclined plane. The downward force \mathbf{F} that gravity exerts on the block can be decomposed into the sum

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2$$

where the force \mathbf{F}_1 is parallel to the ramp and the force \mathbf{F}_2 is perpendicular to the ramp. The forces \mathbf{F}_1 and \mathbf{F}_2 are useful because \mathbf{F}_1 is the force that pulls the block *along* the ramp, and \mathbf{F}_2 is the force that the block exerts *against* the ramp.

against the ramp and down the ramp.

Figure 1-25

Thus, our next objective is to develop a computational procedure for decomposing a vector into a sum of orthogonal vectors. For this purpose, suppose that \mathbf{e}_1 and \mathbf{e}_2 are two orthogonal *unit* vectors in 2-space, and suppose that we want to express a given vector \mathbf{v} as a sum

$$\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$$

so that \mathbf{w}_1 is a scalar multiple of \mathbf{e}_1 and \mathbf{w}_2 is a scalar multiple of \mathbf{e}_2 (Figure 1-26*a*).

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{e}_1) \mathbf{e}_1 + (\mathbf{v} \cdot \mathbf{e}_2) \mathbf{e}_2$$

In this formula we call $(\mathbf{v} \cdot \mathbf{e}_1)\mathbf{e}_1$ and $(\mathbf{v} \cdot \mathbf{e}_2)\mathbf{e}_2$ the *vec*tor components of \mathbf{v} along \mathbf{e}_1 and \mathbf{e}_2 , respectively;

Figure 1-26

and we call $\mathbf{v} \cdot \mathbf{e}_1$ and $\mathbf{v} \cdot \mathbf{e}_2$ the *scalar components* of \mathbf{v} along \mathbf{e}_1 and \mathbf{e}_2 , respectively. If θ denotes the angle between \mathbf{v} and \mathbf{e}_1 , and the angle between \mathbf{v} and \mathbf{e}_2 is $\pi/2$ or less, then the scalar components of \mathbf{v} can be written in trigonometric form as

$$\mathbf{v} \cdot \mathbf{e}_1 = ||\mathbf{v}|| \cos\theta$$
 and $\mathbf{v} \cdot \mathbf{e}_2 = ||\mathbf{v}|| \sin\theta$

(Figure 1-26b). Moreover, the vector components of \mathbf{v} can be expressed as

$$(\mathbf{v} \cdot \mathbf{e}_1)\mathbf{e}_1 = (\|\mathbf{v}\|\cos\theta)\mathbf{e}_1$$
 and $(\mathbf{v} \cdot \mathbf{e}_2)\mathbf{e}_2 = (\|\mathbf{v}\|\sin\theta)\mathbf{e}_2$

The decomposition can be expressed as

$$\mathbf{v} = (\|\mathbf{v}\|\cos\theta)\mathbf{e}_1 + (\|\mathbf{v}\|\sin\theta)\mathbf{e}_2$$

provided the angle between **v** and \mathbf{e}_2 is at most $\pi/2$.

Example 1.16 Let

$$\mathbf{v} = \langle 2, 3 \rangle, \quad \mathbf{e}_1 = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle, \quad \text{and} \quad \mathbf{e}_2 = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$$

Find the scalar components of **v** along \mathbf{e}_1 and \mathbf{e}_2 and the vector components of **v** along \mathbf{e}_1 and \mathbf{e}_2 .

Solution. The scalar components of **v** along \mathbf{e}_1 and \mathbf{e}_2 are

$$\mathbf{v} \cdot \mathbf{e}_1 = 2\left(\frac{1}{\sqrt{2}}\right) + 3\left(\frac{1}{\sqrt{2}}\right) = \frac{5}{\sqrt{2}}$$
$$\mathbf{v} \cdot \mathbf{e}_2 = 2\left(-\frac{1}{\sqrt{2}}\right) + 3\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}$$

so the vector components are

$$(\mathbf{v} \cdot \mathbf{e}_1)\mathbf{e}_1 = \frac{5}{\sqrt{2}} \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle = \left\langle \frac{5}{2}, \frac{5}{2} \right\rangle$$
$$(\mathbf{v} \cdot \mathbf{e}_2)\mathbf{e}_2 = \frac{1}{\sqrt{2}} \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle = \left\langle -\frac{1}{2}, \frac{1}{2} \right\rangle$$

Example 1.17 A rope is attached to a 100 lb block on a ramp that is inclined at an angle of 30° with the ground (Figure 1-27*a*). How much force does the block exert against the ramp, and how much force must be applied to the rope in a direction parallel to the ramp to prevent the block from sliding down the ramp? (Assume that the ramp is smooth, that is, exerts no frictional forces.)

Solution. Let **F** denote the downward force of gravity on the block (so $||\mathbf{F}|| = 100$ lb), and let \mathbf{F}_1 and \mathbf{F}_2 be the vector components of **F** parallel and perpendicular to the ramp (as shown in Figure 1-27*b*). The lengths of \mathbf{F}_1 and \mathbf{F}_2 are

$$\|\mathbf{F}_1\| = \|\mathbf{F}\|\cos 60^\circ = 100\left(\frac{1}{2}\right) = 50 \text{ lb}$$

 $\|\mathbf{F}_2\| = \|\mathbf{F}\|\sin 60^\circ = 100\left(\frac{\sqrt{3}}{2}\right) \approx 86.6 \text{ lb}$

Figure 1-27

Thus, the block exerts a force of approximately 86.6 lb against the ramp, and it requires a force of 50 lb to prevent the block from sliding down the ramp.

1.3.2 Orthogonal Projections

The vector components of \mathbf{v} along \mathbf{e}_1 and \mathbf{e}_2 in previous equation are also called the *orthogo*nal projections of \mathbf{v} on \mathbf{e}_1 and \mathbf{e}_2 and are commonly denoted by

$$\operatorname{proj}_{e_1} \mathbf{v} = (\mathbf{v} \cdot \mathbf{e}_1)\mathbf{e}_1$$
 and $\operatorname{proj}_{e_2} \mathbf{v} = (\mathbf{v} \cdot \mathbf{e}_2)\mathbf{e}_2$

In general, if **e** is a unit vector, then we define the *orthogonal projection of* **v** on **e** to be

$$\operatorname{proj}_{\mathbf{e}} \mathbf{v} = (\mathbf{v} \cdot \mathbf{e})\mathbf{e}$$

$$\operatorname{proj}_{\mathbf{b}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\mathbf{b}$$

Geometrically, if **b** and **v** have a common initial point, then $\text{proj}_{\mathbf{b}}\mathbf{v}$ is the vector that is determined when a perpendicular is dropped from the terminal point of **v** to the line through **b** (illustrated in Figure 1-28 in two cases).

Figure 1-28

Example 1-18 Find the orthogonal projection of $\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ on $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j}$, and then find the vector component of \mathbf{v} orthogonal to \mathbf{b} .

Solution. We have

$$\mathbf{v} \cdot \mathbf{b} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (2\mathbf{i} + 2\mathbf{j}) = 2 + 2 + 0 = 4$$

 $\|\mathbf{b}\|^2 = 2^2 + 2^2 = 8$

Thus, the orthogonal projection of **v** on **b** is

$$\operatorname{proj}_{\mathbf{b}}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^{2}}\mathbf{b} = \frac{4}{8}(2\mathbf{i} + 2\mathbf{j}) = \mathbf{i} + \mathbf{j}$$

and the vector component of \mathbf{v} orthogonal to \mathbf{b} is

$$\mathbf{v} - \text{proj}_{\mathbf{b}}\mathbf{v} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) - (\mathbf{i} + \mathbf{j}) = \mathbf{k}$$

These results are consistent with Figure 1-29.

Figure 1-29