Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

1.3 DOT PRODUCT; PROJECTIONS
1.3.1 Definition of the Dot Product

Definition If u = (uq,u,) and v = (v, v,) are vectors in 2-space, then the dot product of u
and v is written as u - v and is defined as (u - v) = u,v; + u,v,
Similarly, if u = (uy, u,, uz) and v = (v,, v,, vg)are vectors in 3-space, then their dot product

|S dEflned as (u * V) == u1v1 + uzvz + u3v3

e In words, the dot product of two vectors is formed by multiplying their corresponding
components and adding the resulting products. Note that the dot product of two vec-
tors is a scalar.

Example 1.12
3,5) - (=1,2) =3(=1) +52) =7
(2,3) + (=3,2) =2(=3)+3(2) =0
(I, =3,4) - (1,5,2) = I(1) + (=3)(O) +4(2) = —6
Here are the same computations expressed another way:
Gi+5)) - (—i4+2)=3(-)+52)=7
(2i+3j) (=3I +2j) =2(=3) +3(2) =0
i—3j4+4k) - (i +5)j4+2k) =1(1)+ (=3)(5) +4(2) = -6
1.3.2 Algebraic Properties of the Dot Product
Theorem If u, v, and w are vectors in 2- or 3-space and k is a scalar, then:
(@) uw-v=v-u
(b) u+(v+w)=u-v+u-w
(¢) k(u-v)=(ku)-v=u-(kv)
(d) v-v=][v|’

(e) 0-v=0
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

1.3.3 Angle between Vectors

Suppose that u and v are nonzero vectors in 2-

space or 3-space that are positioned so their ini- u u

tial points coincide. We define the angle be- 6 | \G
tween u and v to be the angle 6 determined by , |
the vectors that satisfies the condition 0 <6 <=
(Figure 1-21). In 2-space, 4 is the smallest coun-

ter clockwise angle through which one of the f
vectors can be rotated until it aligns with the 4 /j\ S
u \d '
other.
y N
u 0

B is the angle between w and v.
Figure 1-21

Theorem If u and v are nonzero vectors in 2-space or 3-space, and if 6 is the angle between

them, then
9 u-v
cosl = ————
llulllv]l
Example 1.13 Find the angle between the vector u =i — 2j + 2k and
(@) v=-3i+6j + 2k (b) w=2i+7j+6k (c)z=-3i+6j -6k
Solution (a).
5 u-v —11 11
cosf = = = ——
lallivl 3)(T) 21
6 = cos™'(—37) A 2.12 radians ~ 121.6°
Solution (b).
0 u-w 0
cosf = = -
ullliwll [[alf{fwl]

Thus, 8 = z/2, which means that the vectors are perpendicular.
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Solution (c).

u-z =27

lulllzl ~ 3)©)

cosf =

Thus, 8 = z, which means that the vectors are oppositely directed. (In retrospect, we could

have seen this without computing &, since z =—-3u.)

134

Notes:

v v o AN
f =, 0
b -\I b H >
u u u
u-v>0 u-v<l u-v=0
Figure 1-22
Interpreting the Sign of the Dot Product
u-v=|ul|lv] cosé @
v ¥ YT
f e, 1
u u u
u-v=0 u-ve<0 u-v=_0
Figure 1-22

The terms “perpendicular,” “orthogonal,” and “normal” are all commonly used to de-
scribe geometric objects that meet at right angles.

Although the zero vector does not make a well-defined angle with other vectors, we
will consider 0 to be orthogonal to all vectors. This convention allows us to say that u
and v are orthogonal vectors if and only if u . v = 0, and makes Formula (2) valid if u

or v (or both) is zero.
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

1.3.5 Direction Angles

In an xy-coordinate system, the direction of a nonzero vector v is completely determined by
the angles a and f between v and the unit vectors i and j (Figure 1-23), and in an Xxyz-
coordinate system the direction is completely determined by the angles a, f, and y between v

and the unit vectors i, j, and k (Figure 1-23).

¥y
j j\
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Figure 1-23
e In both 2-space and 3-space the angles between a nonzero vector v and the vectors i, J,
and k are called the direction angles of v, and the cosines of those angles are called
the direction cosines of v.

Theorem The direction cosines of a nonzero vector v =vii + v, J + vzk are

V] (%) U3

coso = w, cos B = m, COSy = ——

gl

Example 1-14 Find the direction cosines of the vector v = 2i — 4j + 4k, and approximate the

direction angles to the nearest degree.
Solution. First we will normalize the vector v and then read off the components. We have

vl = /4 + 16 + 16 = 6, so that v/||v|| = 3i — 3j + 3k. Thus,

, COSy = 3

Wk |
| b2

cosa = %, cosff = —

With the help of a calculating utility we obtain

o = cos_l(%) ~T71°, B = cos_l(—%) ~ 132°, y= cos"(%) s 48°
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Example 1-15 Find the angle between a diagonal of a cube and one of its edges.
Solution. Assume that the cube has side a, and introduce a coordinate system as shown in
Figure 1-24. In this coordinate system the vector

d=ai+aj+ak

AZ

(0,0, a)

1(a, al a)

T
(0, a, 0)

/ (a. 0. 0)
X

Figure 1-24
is a diagonal of the cube and the unit vectors i, j, and k run along the edges. By symmetry,
the diagonal makes the same angle with each edge, so it is sufficient to find the angle be-
tween d and i (the direction angle «). Thus,

d-i a a |

lapin — Idl - 322 /3

CoOS =

1 )
1 . o
o = COS — | & 0.955 radian = 54.7
(I
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

1.3.1 Decomposing Vectors into Orthogonal Components

In many applications it is desirable to “decompose” a vector into a sum of two orthogonal
vectors with convenient specified directions. For example, Figure 1-25 shows a block on an
inclined plane. The downward force F that gravity exerts on the block can be decomposed
into the sum

F=F+F,
where the force F; is parallel to the ramp and the force F; is perpendicular to the ramp. The
forces F; and F, are useful because F; is the force that pulls the block along the ramp, and F

is the force that the block exerts against the ramp.

The force of gravity pulls the block
against the ramp and down the ramp.

Figure 1-25
Thus, our next objective is to develop a computational
procedure for decomposing a vector into a sum of or-
thogonal vectors. For this purpose, suppose that e; and

e, are two orthogonal unit vectors in 2-space, and sup-

pose that we want to EXPress a given vector v as a sum

V=W + W,

so that w; is a scalar multiple of e; and w; is a scalar

' !
multiple of e, (Figure 1-26a). e Iv] I
[|v] sin &
v=(v.e)e +(v.e)e; I
In this formula we call (v . e1)e; and (v . e;)e; the vec- . L
tor components of v along e; and e,, respectively; ¢ (Ivl cos fe,
(b)
Figure 1-26
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

and we call v . e; and v . e, the scalar components of v along e; and e, respectively. If 8 de-
notes the angle between v and e;, and the angle between v and e; is z/2 or less, then the scalar
components of v can be written in trigonometric form as

V. e = lIvll cosd and  v.ey=Ilvllsing

(Figure 1-26b). Moreover, the vector components of v can be expressed as
(v-ep)e; =([[vlcosf)e; and (v er)e; = ([v]/sinb)e;
The decomposition can be expressed as
v = ([[vlicos®)e; + (|[v]sinb)e,

provided the angle between v and e; is at most z/2.
Example 1.16 Let

1 1 1 1
v=1(2.3), eg=(—=,—}), and e =(—x. —
A (JE NG > ’ ( 22 >
Find the scalar components of v along e; and e, and the vector components of v along e; and
€.

Solution. The scalar components of v along e; and e, are

(v - er)er =

N o R
Fd | —
Fd | =
_

_ 1 11
“"‘”“Ezﬁ<‘¢f’ JE}:
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Example 1.17 A rope is attached to a 100 Ib block on a ramp that is
inclined at an angle of 30 with the ground (Figure 1-27a). How

much force does the block exert against the ramp, and how much

force must be applied to the rope in a direction parallel to the ramp to

prevent the block from sliding down the ramp? (Assume that the (a)
ramp is smooth, that is, exerts no frictional forces.)
Solution. Let F denote the downward force of gravity on the block

(so IIFIl = 100 Ib), and let F; and F, be the vector components of F i

parallel and perpendicular to the ramp (as shown in Figure 1-27b). A30°

The lengths of F; and F; are

(b)
Figure 1-27

: 1
|Fy|l = ||F|[cos60” = 100 (;) =501b

V3

)

IF5|| = [|F||sin 60° = 100( ) ~ 86.6 1b

Thus, the block exerts a force of approximately 86.6 Ib against the ramp, and it requires a

force of 50 Ib to prevent the block from sliding down the ramp.
1.3.2 Orthogonal Projections

The vector components of v along e; and e, in previous equation are also called the orthogo-
nal projections of v on e; and e, and are commonly denoted by

proj,, vV =1(v-ej)e; and proj,v=(v-ey)e;
In general, if e is a unit vector, then we define the orthogonal projection of v on e to be

proj,y = (v - e)e

v'hbh
-b
Ib]|~

Geometrically, if b and v have a common initial point, then projpV is the vector that is deter-

proj,v =

mined when a perpendicular is dropped from the terminal point of v to the line through b (il-

lustrated in Figure 1-28 in two cases).
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- :1 f' _________ P
. v I | v .
V — projy,v I I V= Prolp¥
—) — p—
b projy,Vv proj, v b
Acute angle Obtuse angle
between v and b between v and b
Figure 1-28

Example 1-18 Find the orthogonal projection of v =i + j + k on b = 2i + 2j, and then find the
vector component of v orthogonal to b.

Solution. We have
veb=(i+j+k - Qi+2j)=2+24+0=4
||l::|||2 =22422=8

Thus, the orthogonal projection of v on b is

b 4
proj,v = h:§[2i+2j}:i+j

b1
and the vector component of v orthogonal to b is
v—projpv=(i+j+k)—(i+j =k

These results are consistent with Figure 1-29.

Figure 1-29
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