1.3 DOT PRODUCT; PROJECTIONS

1.3.1 Definition of the Dot Product

Definition If $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ are vectors in 2-space, then the dot product of \mathbf{u} and \mathbf{v} is written as $\mathbf{u} \cdot \mathbf{v}$ and is defined as $\langle\mathbf{u} \cdot \mathbf{v}\rangle=u_{1} v_{1}+u_{2} v_{2}$
Similarly, if $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are vectors in 3-space, then their dot product is defined as $\langle\mathbf{u} \cdot \mathbf{v}\rangle=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

- In words, the dot product of two vectors is formed by multiplying their corresponding components and adding the resulting products. Note that the dot product of two vectors is a scalar.

Example 1.12

$$
\begin{aligned}
& \langle 3,5\rangle \cdot\langle-1,2\rangle=3(-1)+5(2)=7 \\
& \langle 2,3\rangle \cdot\langle-3,2\rangle=2(-3)+3(2)=0 \\
& \langle 1,-3,4\rangle \cdot\langle 1,5,2\rangle=1(1)+(-3)(5)+4(2)=-6
\end{aligned}
$$

Here are the same computations expressed another way:

$$
\begin{aligned}
& (3 \mathbf{i}+5 \mathbf{j}) \cdot(-\mathbf{i}+2 \mathbf{j})=3(-1)+5(2)=7 \\
& (2 \mathbf{i}+3 \mathbf{j}) \cdot(-3 \mathbf{i}+2 \mathbf{j})=2(-3)+3(2)=0 \\
& (\mathbf{i}-3 \mathbf{j}+4 \mathbf{k}) \cdot(\mathbf{i}+5 \mathbf{j}+2 \mathbf{k})=1(1)+(-3)(5)+4(2)=-6
\end{aligned}
$$

1.3.2 Algebraic Properties of the Dot Product

Theorem If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in 2- or 3-space and k is a scalar, then:
(a) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(b) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
(c) $k(\mathbf{u} \cdot \mathbf{v})=(k \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(k \mathbf{v})$
(d) $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
(e) $\mathbf{0} \cdot \mathbf{v}=0$

1.3.3 Angle between Vectors

Suppose that \mathbf{u} and \mathbf{v} are nonzero vectors in 2space or 3-space that are positioned so their initial points coincide. We define the angle between \mathbf{u} and \mathbf{v} to be the angle θ determined by the vectors that satisfies the condition $0 \leq \theta \leq \pi$ (Figure 1-21). In 2 -space, θ is the smallest counter clockwise angle through which one of the vectors can be rotated until it aligns with the other.

θ is the angle between \mathbf{u} and \mathbf{v}.
Figure 1-21

Theorem If \mathbf{u} and \mathbf{v} are nonzero vectors in 2-space or 3-space, and if θ is the angle between them, then

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

Example 1.13 Find the angle between the vector $\mathbf{u}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and
(a) $\mathbf{v}=-3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}$
(b) $\mathbf{w}=2 \mathbf{i}+7 \mathbf{j}+6 \mathbf{k}$
(c) $\mathbf{z}=-3 \mathbf{i}+6 \mathbf{j}-6 \mathbf{k}$

Solution (a).

$$
\begin{gathered}
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{-11}{(3)(7)}=-\frac{11}{21} \\
\theta=\cos ^{-1}\left(-\frac{11}{21}\right) \approx 2.12 \text { radians } \approx 121.6^{\circ}
\end{gathered}
$$

Solution (b).

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{w}}{\|\mathbf{u}\|\|\mathbf{w}\|}=\frac{0}{\|\mathbf{u}\|\|\mathbf{w}\|}=0
$$

Thus, $\theta=\pi / 2$, which means that the vectors are perpendicular.

Solution (c).

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{z}}{\|\mathbf{u}\|\|\mathbf{z}\|}=\frac{-27}{(3)(9)}=-1
$$

Thus, $\theta=\pi$, which means that the vectors are oppositely directed. (In retrospect, we could have seen this without computing θ, since $\mathbf{z}=-3 \mathbf{u}$.)

$\mathbf{u} \cdot \mathbf{v}>0$

$\mathbf{u} \cdot \mathbf{v}<0$

$$
\mathbf{u} \cdot \mathbf{v}=0
$$

Figure 1-22

1.3.4 Interpreting the Sign of the Dot Product

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

(a)

Figure 1-22

Notes:

- The terms "perpendicular," "orthogonal," and "normal" are all commonly used to describe geometric objects that meet at right angles.
- Although the zero vector does not make a well-defined angle with other vectors, we will consider 0 to be orthogonal to all vectors. This convention allows us to say that \mathbf{u} and \mathbf{v} are orthogonal vectors if and only if $\mathbf{u} \cdot \mathbf{v}=0$, and makes Formula (a) valid if \mathbf{u} or \mathbf{v} (or both) is zero.

1.3.5 Direction Angles

In an $x y$-coordinate system, the direction of a nonzero vector \mathbf{v} is completely determined by the angles α and β between \mathbf{v} and the unit vectors \mathbf{i} and \mathbf{j} (Figure 1-23), and in an xyzcoordinate system the direction is completely determined by the angles α, β, and γ between \mathbf{v} and the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} (Figure 1-23).

Figure 1-23

- In both 2 -space and 3-space the angles between a nonzero vector \mathbf{v} and the vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} are called the direction angles of \mathbf{v}, and the cosines of those angles are called the direction cosines of \mathbf{v}.

Theorem The direction cosines of a nonzero vector $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ are

$$
\cos \alpha=\frac{v_{1}}{\|\mathbf{v}\|}, \quad \cos \beta=\frac{v_{2}}{\|\mathbf{v}\|}, \quad \cos \gamma=\frac{v_{3}}{\|\mathbf{v}\|}
$$

Example 1-14 Find the direction cosines of the vector $\mathbf{v}=2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}$, and approximate the direction angles to the nearest degree.

Solution. First we will normalize the vector \mathbf{v} and then read off the components. We have

$$
\begin{aligned}
& \|\mathbf{v}\|=\sqrt{4+16+16}=6, \text { so that } \mathbf{v} /\|\mathbf{v}\|=\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k} . \text { Thus, } \\
& \qquad \cos \alpha=\frac{1}{3}, \quad \cos \beta=-\frac{2}{3}, \quad \cos \gamma=\frac{2}{3}
\end{aligned}
$$

With the help of a calculating utility we obtain

$$
\alpha=\cos ^{-1}\left(\frac{1}{3}\right) \approx 71^{\circ}, \quad \beta=\cos ^{-1}\left(-\frac{2}{3}\right) \approx 132^{\circ}, \quad \gamma=\cos ^{-1}\left(\frac{2}{3}\right) \approx 48^{\circ}
$$

Example 1-15 Find the angle between a diagonal of a cube and one of its edges.
Solution. Assume that the cube has side a, and introduce a coordinate system as shown in Figure 1-24. In this coordinate system the vector

Figure 1-24
is a diagonal of the cube and the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} run along the edges. By symmetry, the diagonal makes the same angle with each edge, so it is sufficient to find the angle between \mathbf{d} and \mathbf{i} (the direction angle α). Thus,

$$
\begin{gathered}
\cos \alpha=\frac{\mathbf{d} \cdot \mathbf{i}}{\|\mathbf{d}\|\|\mathbf{i}\|}=\frac{a}{\|\mathbf{d}\|}=\frac{a}{\sqrt{3 a^{2}}}=\frac{1}{\sqrt{3}} \\
\alpha=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 0.955 \text { radian } \approx 54.7^{\circ}
\end{gathered}
$$

1.3.1 Decomposing Vectors into Orthogonal Components

In many applications it is desirable to "decompose" a vector into a sum of two orthogonal vectors with convenient specified directions. For example, Figure 1-25 shows a block on an inclined plane. The downward force \mathbf{F} that gravity exerts on the block can be decomposed into the sum

$$
\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}
$$

where the force \mathbf{F}_{1} is parallel to the ramp and the force \mathbf{F}_{2} is perpendicular to the ramp. The forces \mathbf{F}_{1} and \mathbf{F}_{2} are useful because \mathbf{F}_{1} is the force that pulls the block along the ramp, and \mathbf{F}_{2} is the force that the block exerts against the ramp.

Figure 1-25
Thus, our next objective is to develop a computational procedure for decomposing a vector into a sum of orthogonal vectors. For this purpose, suppose that \mathbf{e}_{1} and \mathbf{e}_{2} are two orthogonal unit vectors in 2-space, and suppose that we want to express a given vector \mathbf{v} as a sum

$$
\mathbf{v}=\mathbf{w}_{1}+\mathbf{w}_{2}
$$

(a)
so that \mathbf{w}_{1} is a scalar multiple of \mathbf{e}_{1} and \mathbf{w}_{2} is a scalar multiple of \mathbf{e}_{2} (Figure 1-26a).

$$
\mathbf{v}=\left(\mathbf{v} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}+\left(\mathbf{v} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{2}
$$

In this formula we call $\left(\mathbf{v} . \mathbf{e}_{1}\right) \mathbf{e}_{1}$ and $\left(\mathbf{v} . \mathbf{e}_{2}\right) \mathbf{e}_{2}$ the $\boldsymbol{v e c}$ tor components of \mathbf{v} along \mathbf{e}_{1} and \mathbf{e}_{2}, respectively;

(b)

Figure 1-26
and we call $\mathbf{v} . \mathbf{e}_{1}$ and $\mathbf{v} . \mathbf{e}_{2}$ the scalar components of \mathbf{v} along \mathbf{e}_{1} and \mathbf{e}_{2}, respectively. If θ denotes the angle between \mathbf{v} and \mathbf{e}_{1}, and the angle between \mathbf{v} and \mathbf{e}_{2} is $\pi / 2$ or less, then the scalar components of \mathbf{v} can be written in trigonometric form as

$$
\mathbf{v} . \mathbf{e}_{1}=\|\mathbf{v}\| \cos \theta \quad \text { and } \quad \mathbf{v} . \mathbf{e}_{2}=\|\mathbf{v}\| \sin \theta
$$

(Figure 1-26b). Moreover, the vector components of \mathbf{v} can be expressed as

$$
\left(\mathbf{v} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}=(\|\mathbf{v}\| \cos \theta) \mathbf{e}_{1} \quad \text { and } \quad\left(\mathbf{v} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{2}=(\|\mathbf{v}\| \sin \theta) \mathbf{e}_{2}
$$

The decomposition can be expressed as

$$
\mathbf{v}=(\|\mathbf{v}\| \cos \theta) \mathbf{e}_{1}+(\|\mathbf{v}\| \sin \theta) \mathbf{e}_{2}
$$

provided the angle between \mathbf{v} and \mathbf{e}_{2} is at most $\pi / 2$.
Example 1.16 Let

$$
\mathbf{v}=\langle 2,3\rangle, \quad \mathbf{e}_{1}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle, \quad \text { and } \quad \mathbf{e}_{2}=\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
$$

Find the scalar components of \mathbf{v} along \mathbf{e}_{1} and \mathbf{e}_{2} and the vector components of \mathbf{v} along \mathbf{e}_{1} and \mathbf{e}_{2}.
Solution. The scalar components of \mathbf{v} along \mathbf{e}_{1} and \mathbf{e}_{2} are

$$
\begin{aligned}
& \mathbf{v} \cdot \mathbf{e}_{1}=2\left(\frac{1}{\sqrt{2}}\right)+3\left(\frac{1}{\sqrt{2}}\right)=\frac{5}{\sqrt{2}} \\
& \mathbf{v} \cdot \mathbf{e}_{2}=2\left(-\frac{1}{\sqrt{2}}\right)+3\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}
\end{aligned}
$$

so the vector components are

$$
\begin{aligned}
& \left(\mathbf{v} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}=\frac{5}{\sqrt{2}}\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\left\langle\frac{5}{2}, \frac{5}{2}\right\rangle \\
& \left(\mathbf{v} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{2}=\frac{1}{\sqrt{2}}\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=\left\langle-\frac{1}{2}, \frac{1}{2}\right\rangle
\end{aligned}
$$

Example 1.17 A rope is attached to a 100 lb block on a ramp that is inclined at an angle of 30° with the ground (Figure 1-27a). How much force does the block exert against the ramp, and how much force must be applied to the rope in a direction parallel to the ramp to prevent the block from sliding down the ramp? (Assume that the ramp is smooth, that is, exerts no frictional forces.)

Solution. Let \mathbf{F} denote the downward force of gravity on the block (so $\|\mathbf{F}\|=100 \mathrm{lb}$), and let \mathbf{F}_{1} and \mathbf{F}_{2} be the vector components of \mathbf{F} parallel and perpendicular to the ramp (as shown in Figure 1-27b). The lengths of \mathbf{F}_{1} and \mathbf{F}_{2} are

(a)
(b)

Figure 1-27

$$
\begin{aligned}
& \left\|\mathbf{F}_{1}\right\|=\|\mathbf{F}\| \cos 60^{\circ}=100\left(\frac{1}{2}\right)=50 \mathrm{lb} \\
& \left\|\mathbf{F}_{2}\right\|=\|\mathbf{F}\| \sin 60^{\circ}=100\left(\frac{\sqrt{3}}{2}\right) \approx 86.6 \mathrm{lb}
\end{aligned}
$$

Thus, the block exerts a force of approximately 86.6 lb against the ramp, and it requires a force of 50 lb to prevent the block from sliding down the ramp.

1.3.2 Orthogonal Projections

The vector components of \mathbf{v} along \mathbf{e}_{1} and \mathbf{e}_{2} in previous equation are also called the orthogonal projections of \mathbf{v} on \mathbf{e}_{1} and \mathbf{e}_{2} and are commonly denoted by

$$
\operatorname{proj}_{\mathbf{e}_{1}} \mathbf{v}=\left(\mathbf{v} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1} \quad \text { and } \quad \operatorname{proj}_{\mathrm{e}_{2}} \mathbf{v}=\left(\mathbf{v} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{2}
$$

In general, if \mathbf{e} is a unit vector, then we define the orthogonal projection of $\mathbf{v} \boldsymbol{o n} \mathbf{e}$ to be

$$
\begin{aligned}
& \operatorname{proj}_{\mathbf{e}} \mathbf{v}=(\mathbf{v} \cdot \mathbf{e}) \mathbf{e} \\
& \operatorname{proj}_{\mathbf{b}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^{2}} \mathbf{b}
\end{aligned}
$$

Geometrically, if \mathbf{b} and \mathbf{v} have a common initial point, then $\operatorname{proj}_{\mathbf{b}} \mathbf{v}$ is the vector that is determined when a perpendicular is dropped from the terminal point of \mathbf{v} to the line through \mathbf{b} (illustrated in Figure 1-28 in two cases).

Acute angle
between \mathbf{v} and \mathbf{b}

Obtuse angle
between \mathbf{v} and \mathbf{b}

Figure 1-28
Example 1-18 Find the orthogonal projection of $\mathbf{v}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ on $\mathbf{b}=2 \mathbf{i}+2 \mathbf{j}$, and then find the vector component of \mathbf{v} orthogonal to \mathbf{b}.

Solution. We have

$$
\begin{aligned}
& \mathbf{v} \cdot \mathbf{b}=(\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot(2 \mathbf{i}+2 \mathbf{j})=2+2+0=4 \\
& \|\mathbf{b}\|^{2}=2^{2}+2^{2}=8
\end{aligned}
$$

Thus, the orthogonal projection of \mathbf{v} on \mathbf{b} is

$$
\operatorname{proj}_{\mathbf{b}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{b}}{\|\mathbf{b}\|^{2}} \mathbf{b}=\frac{4}{8}(2 \mathbf{i}+2 \mathbf{j})=\mathbf{i}+\mathbf{j}
$$

and the vector component of \mathbf{v} orthogonal to \mathbf{b} is

$$
\mathbf{v}-\operatorname{proj}_{\mathbf{b}} \mathbf{v}=(\mathbf{i}+\mathbf{j}+\mathbf{k})-(\mathbf{i}+\mathbf{j})=\mathbf{k}
$$

These results are consistent with Figure 1-29.

Figure 1-29

