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1.3 DOT PRODUCT; PROJECTIONS 

1.3.1 Definition of the Dot Product 

Definition If 𝐮 = 〈𝑢1, 𝑢2〉 and 𝐯 = 〈𝑣1, 𝑣2〉 are vectors in 2-space, then the dot product of u 

and v is written as u ∙ v and is defined as 〈𝐮 ∙ 𝐯〉 = 𝑢1𝑣1 + 𝑢2𝑣2 

Similarly, if 𝐮 = 〈𝑢1, 𝑢2, 𝑢3〉 and 𝐯 = 〈𝑣1, 𝑣2, 𝑣3〉are vectors in 3-space, then their dot product 

is defined as 〈𝐮 ∙ 𝐯〉 = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 

 

 In words, the dot product of two vectors is formed by multiplying their corresponding 

components and adding the resulting products. Note that the dot product of two vec-

tors is a scalar. 

Example 1.12  

 

Here are the same computations expressed another way: 

 

1.3.2 Algebraic Properties of the Dot Product 

Theorem If u, v, and w are vectors in 2- or 3-space and k is a scalar, then: 
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1.3.3 Angle between Vectors 

Suppose that u and v are nonzero vectors in 2-

space or 3-space that are positioned so their ini-

tial points coincide. We define the angle be-

tween u and v to be the angle θ determined by 

the vectors that satisfies the condition 0 ≤ θ ≤ π 

(Figure 1-21). In 2-space, θ is the smallest coun-

ter clockwise angle through which one of the 

vectors can be rotated until it aligns with the 

other. 

 

 

 

 

 

Figure 1-21 

 

Theorem If u and v are nonzero vectors in 2-space or 3-space, and if θ is the angle between 

them, then 

cos 𝜃 =
𝐮 ∙ 𝐯

‖𝐮‖‖𝐯‖
 

Example 1.13 Find the angle between the vector u = i − 2j + 2k and 

(a) v = −3i + 6j + 2k   (b) w = 2i + 7j + 6k   (c) z = −3i + 6j − 6k 

Solution (a). 

 

 

Solution (b). 

 

Thus, θ = π/2, which means that the vectors are perpendicular. 
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Solution (c). 

 

Thus, θ = π, which means that the vectors are oppositely directed. (In retrospect, we could 

have seen this without computing θ, since z = −3u.) 

 

Figure 1-22 

1.3.4 Interpreting the Sign of the Dot Product 

                         (a) 

 

Figure 1-22 

Notes:  

 The terms “perpendicular,” “orthogonal,” and “normal” are all commonly used to de-

scribe geometric objects that meet at right angles. 

 Although the zero vector does not make a well-defined angle with other vectors, we 

will consider 0 to be orthogonal to all vectors. This convention allows us to say that u 

and v are orthogonal vectors if and only if u . v = 0, and makes Formula (a) valid if u 

or v (or both) is zero. 
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1.3.5 Direction Angles 

In an xy-coordinate system, the direction of a nonzero vector v is completely determined by 

the angles α and β between v and the unit vectors i and j (Figure 1-23), and in an xyz-

coordinate system the direction is completely determined by the angles α, β, and γ between v 

and the unit vectors i, j, and k (Figure 1-23). 

  

Figure 1-23 

 In both 2-space and 3-space the angles between a nonzero vector v and the vectors i, j, 

and k are called the direction angles of v, and the cosines of those angles are called 

the direction cosines of v. 

Theorem The direction cosines of a nonzero vector v = v1i + v2 j + v3k are 

 

 

Example 1-14 Find the direction cosines of the vector v = 2i − 4j + 4k, and approximate the 

direction angles to the nearest degree. 

Solution. First we will normalize the vector v and then read off the components. We have 

 

With the help of a calculating utility we obtain 
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Example 1-15 Find the angle between a diagonal of a cube and one of its edges. 

Solution. Assume that the cube has side a, and introduce a coordinate system as shown in 

Figure 1-24. In this coordinate system the vector 

d = ai + a j + ak 

 

Figure 1-24 

is a diagonal of the cube and the unit vectors i, j, and k run along the edges. By symmetry, 

the diagonal makes the same angle with each edge, so it is sufficient to find the angle be-

tween d and i (the direction angle α). Thus, 
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1.3.1 Decomposing Vectors into Orthogonal Components 

In many applications it is desirable to “decompose” a vector into a sum of two orthogonal 

vectors with convenient specified directions. For example, Figure 1-25 shows a block on an 

inclined plane. The downward force F that gravity exerts on the block can be decomposed 

into the sum 

F = F1 + F2 

where the force F1 is parallel to the ramp and the force F2 is perpendicular to the ramp. The 

forces F1 and F2 are useful because F1 is the force that pulls the block along the ramp, and F2 

is the force that the block exerts against the ramp.  

 

Figure 1-25 

Thus, our next objective is to develop a computational 

procedure for decomposing a vector into a sum of or-

thogonal vectors. For this purpose, suppose that e1 and 

e2 are two orthogonal unit vectors in 2-space, and sup-

pose that we want to express a given vector v as a sum 

v = w1 + w2 

 

so that w1 is a scalar multiple of e1 and w2 is a scalar 

multiple of e2 (Figure 1-26a). 

v = (v . e1) e1 + (v . e2) e2 

In this formula we call (v . e1)e1 and (v . e2)e2 the vec-

tor components of v along e1 and e2, respectively;  

 

Figure 1-26 
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and we call v . e1 and v . e2 the scalar components of v along e1 and e2, respectively. If θ de-

notes the angle between v and e1, and the angle between v and e2 is π/2 or less, then the scalar 

components of v can be written in trigonometric form as  

v . e1 = ǀǀvǀǀ cosθ        and       v . e2 = ǀǀvǀǀ sinθ 

(Figure 1-26b). Moreover, the vector components of v can be expressed as 

 

The decomposition can be expressed as 

 

provided the angle between v and e2 is at most π/2. 

Example 1.16 Let 

 

Find the scalar components of v along e1 and e2 and the vector components of v along e1 and 

e2. 

Solution. The scalar components of v along e1 and e2 are 

 

so the vector components are 
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Example 1.17 A rope is attached to a 100 lb block on a ramp that is 

inclined at an angle of 30◦ with the ground (Figure 1-27a). How 

much force does the block exert against the ramp, and how much 

force must be applied to the rope in a direction parallel to the ramp to 

prevent the block from sliding down the ramp? (Assume that the 

ramp is smooth, that is, exerts no frictional forces.) 

Solution. Let F denote the downward force of gravity on the block 

(so ǀǀFǀǀ = 100 lb), and let F1 and F2 be the vector components of F 

parallel and perpendicular to the ramp (as shown in Figure 1-27b). 

The lengths of F1 and F2 are 

 

 

Thus, the block exerts a force of approximately 86.6 lb against the ramp, and it requires a 

force of 50 lb to prevent the block from sliding down the ramp. 

1.3.2 Orthogonal Projections 

The vector components of v along e1 and e2 in previous equation are also called the orthogo-

nal projections of v on e1 and e2 and are commonly denoted by 

 

In general, if e is a unit vector, then we define the orthogonal projection of v on e to be 

 

 

Geometrically, if b and v have a common initial point, then projbv is the vector that is deter-

mined when a perpendicular is dropped from the terminal point of v to the line through b (il-

lustrated in Figure 1-28 in two cases). 

Figure 1-27 
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Figure 1-28 

 

Example 1-18 Find the orthogonal projection of v = i + j + k on b = 2i + 2j, and then find the 

vector component of v orthogonal to b. 

Solution. We have 

 

Thus, the orthogonal projection of v on b is 

 

and the vector component of v orthogonal to b is 

 

These results are consistent with Figure 1-29. 

 

Figure 1-29 

  


