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1.4 CROSS PRODUCT 

Some of the concepts that we will develop in this section require basic ideas about determi-

nants, which are functions that assign numerical values to square arrays of numbers. For ex-

ample, if a1, a2, b1, and b2 are real numbers, then we define a 2 × 2 determinant by 

|
𝑎1 𝑎2

𝑏1 𝑏2
| = 𝑎1𝑏2 − 𝑎2𝑏1 

 

 The purpose of the arrows is to help you remember the formula—the determinant is 

the product of the entries on the rightward arrow minus the product of the entries on the left-

ward arrow. For example, 

|
3 −2
4 5

| = (3)(5) − (4)(−2) = 15 + 8 = 23 

 
A 3 × 3 determinant is defined in terms of 2 × 2 determinants by 

[

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

] = 𝑎1 |
𝑏2 𝑏3

𝑐2 𝑐3
| − 𝑎2 |

𝑏1 𝑏3

𝑐1 𝑐3
| + 𝑎3 |

𝑏1 𝑏2

𝑐1 𝑐2
| 

The right side of this formula is easily remembered by noting that a1, a2, and a3 are the entries 

in the first “row” of the left side, and the 2 × 2 determinants on the right side arise by deleting 

the first row and an appropriate column from the left side. The pattern is as follows: 

 

Example 1-19: 

|
3 −2 −5
1 4 −4
0 3 2

| = 3 |
4 −4
3 2

| − (−2) |
1 −4
0 2

| + (−5) |
1 4
0 3

|

= 3(20) + 2(2) − 5(3) = 49 

 

There are also definitions of 4 × 4 determinants, 5 × 5 determinants, and higher, but we will 

not need them in this text. Properties of determinants are studied in a branch of mathematics 

called linear algebra, but we will only need the two properties stated in the following theo-

rem. 
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Theorem 

(a) If two rows in the array of a determinant are the same, then the value of the determinant is 

0. 

(b) Interchanging two rows in the array of a determinant multiplies its value by −1. 

 

Proof (a) 

|
𝑎1 𝑎2

𝑎1 𝑎2
| = 𝑎1𝑎2 − 𝑎2𝑎1 = 0 

 

 

Proof (b) 

|
𝑏1 𝑏2

𝑎1 𝑎2
| = 𝑏1𝑎2 − 𝑏2𝑎1 = −(𝑎1𝑏2 − 𝑎2𝑏1) 

 
Definition  

If u = (u1, u2, u3) and v = (v1, v2, v3) are vectors in 3-space, then the cross product u × v is the 

vector defined by 

𝐮 × 𝐯 = |
𝑢2 𝑢3

𝑣2 𝑣3
| 𝐢 − |

𝑢1 𝑢3

𝑣1 𝑣3
| 𝐣 + |

𝑢1 𝑢2

𝑣1 𝑣2
| 𝐤 

or, equivalently, 

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1) j + (u1v2 − u2v1)k 

 

Observe that the right side of Formula has the same form as the right side of Formula, the dif-

ference being notation and the order of the factors in the three terms. Thus, we can rewrite as 

𝐮 × 𝐯 = |
i j k
𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

| 

However, this is just a mnemonic device and not a true determinant since the entries in a de-

terminant are numbers, not vectors. 

 

 

 

 

Example 1-20 Let u = (1, 2, −2) and v = (3, 0, 1). Find   (a) u × v   (b) v × u 
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Solution (a) 

𝐮 × 𝐯 = |
𝐢 𝐣 𝐤
1 2 −2
3 0 1

| = |
2 −2
0 1

| 𝐢 − |
1 −2
3 1

| 𝐣 + |
1 2
3 0

| 𝐤 = 2𝐢 − 7𝐣 − 6𝐤  

(b) 

𝐮 × 𝐯 = −(𝐯 × 𝐮) = −2𝐢 + 7𝐣 + 6𝐤   

1.4.1 Algebraic Properties of the Cross Product 

Theorem 

If u, v, and w are any vectors in 3-space and k is any scalar, then: 

(a) u × v = −(v × u) 

(b) u × (v + w) = (u × v) + (u × w) 

(c) (u + v) × w = (u × w) + (v × w) 

(d ) k(u × v) = (ku) × v = u × (kv) 

(e) u × 0 = 0 × u = 0 

( f ) u × u = 0 

The following cross products occur so frequently that it is helpful to be familiar with them: 

i × j =k    j × k = i     k × i = j 

j × i = −k    k × j = −i     i × k = −j 

Example 1-21 

 

1.4.2 Geometric Properties of the Cross Product 

Theorem 

If u and v are vectors in 3-space, then: 

(a) u . (u × v) = 0 (u × v is orthogonal to u) 

(b) v . (u × v) = 0 (u × v is orthogonal to v) 

We will prove part (a). The proof of part (b) is similar. 

Proof (a)  

Let u = (u1, u2, u3) and v = (v1, v2, v3). Then  

u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) 
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so that u . (u × v) = u1(u2v3 − u3v2) + u2(u3v1 − u1v3) + u3(u1v2 − u2v1) = 0 

Example 1-22 Find a vector that is orthogonal to both of the vectors u = (2, −1, 3) and v = (−

7, 2, −1). 

Solution: 

 

It can be proved that if u and v are nonzero and nonparallel vectors, then the direction of u × 

v relative to u and v is determined by a right-hand rule; that is, if the fingers of the right hand 

are cupped so they curl from u toward v in the direction of rotation that takes u into v in less 

than 180◦ , then the thumb will point (roughly) in the direction of u × v (Figure 1-30).  

 

Figure 1-30 
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Theorem 

Let u and v be nonzero vectors in 3-space, and let θ be the angle between these vectors when 

they are positioned so their initial points coincide. 

(a) ‖𝐮 × 𝐯‖ = ‖𝐮‖‖𝐯‖ sin 𝜃 

(b) The area A of the parallelogram that has u and v as adjacent sides is 

𝐴 = ‖𝐮 × 𝐯‖  

(c) u × v = 0 if and only if u and v are parallel vectors, that is, if and only if they are scalar 

multiples of one another. 

 

Proof (a) 

 

 

Figure 1-31 

Example 1-23 Find the area of the triangle that is determined by the points P1(2, 2, 0), P2(−1, 

0, 2), and P3(0, 4, 3). 
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Figure 1-32 

1.4.3 Scalar Triple Products 

If u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3) are vectors in 3-space, then the number 

                                                    u . (v × w) 

is called the scalar triple product of u, v, and w. It is not necessary to compute the dot prod-

uct and cross product to evaluate a scalar triple product—the value can be obtained directly 

from the formula 

𝐮 ∙ (𝐯 × 𝐰) = |

𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

𝑤1 𝑤2 𝑤3

| 

The validity of which can be seen by writing 

 

 

Figure 1-32 
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Example 1-24 Calculate the scalar triple product u . (v × w) of the vectors u = 3i − 2j − 5k, v 

= i + 4j − 4k, w = 3j + 2k 

Solution 

 

 

 

 

 

1.4.4 Geometric Properties of the Scalar Triple Product 

If u, v, and w are nonzero vectors in 3-space that are positioned so their initial points coin-

cide, then these vectors form the adjacent sides of a parallelepiped (see figure). The following 

theorem establishes a relationship between the volume of this parallelepiped and the scalar 

triple product of the sides.  

 

Theorem 

 Let u, v, and w be nonzero vectors in 3-space. 

(a) The volume V of the parallelepiped that has u, v, and w 

as adjacent edges is 

𝑉 = |𝐮 . (𝐯 × 𝐰)| 

(b) u . (v × w) = 0 if and only if u, v, and w lie in the same 

plane. 

 

1.4.5 Algebraic Properties of the Scalar Triple Product 

 The expression u × v × w must be avoided because it is ambiguous without parenthe-

ses. However, the expression u . v × w is not ambiguous—it has to mean u . (v × w) 

and not (u . v) × w because we cannot form the cross product of a scalar and a vector.  

 Similarly, the expression u × v . w must mean (u × v) . w and not u × (v . w). Thus, 

when you see an expression of the form u . v × w or u × v . w, the cross product is 

formed first and the dot product second. 

 Since interchanging two rows of a determinant multiplies its value by −1, making two 

row interchanges in a determinant has no effect on its value. This being the case, it 

follows that 
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u . (v × w) = w . (u × v) = v . (w × u) 

 Since the 3 × 3 determinants that are used to compute these scalar triple products can 

be obtained from one another by two row interchanges. 

 Another useful formula can be obtained by rewriting the first equality as 

u . (v × w) = (u × v) . w 

            and then omitting the superfluous parentheses to obtain 

u . v × w = u × v . w 

 

1.5  PARAMETRIC EQUATIONS OF LINES 

1.5.1 Lines Determined By a Point and a Vector 

A line in 2-space or 3-space can be determined uniquely by specifying a point on the line and 

a nonzero vector parallel to the line (see Figure).  

For example, consider a line L in 3-space that passes through the point P0(x0, y0, z0) and is 

parallel to the nonzero vector v = (a, b, c). Then L consists precisely of those points P(x, y, z) 

for which the vector 𝑃0𝑃⃗⃗⃗⃗⃗⃗  ⃗ is parallel to v (see figure). In other words, the point P(x, y, z) is on 

L if and only if 𝑃0𝑃⃗⃗⃗⃗⃗⃗  ⃗ is a scalar multiple of v, say 

𝑃0𝑃⃗⃗⃗⃗⃗⃗  ⃗ = t𝐯 

 

 

 

 

 

 

 

 

 

Theorem 

(a) The line in 2-space that passes through the point P0(x0, y0) and is parallel to the nonzero 

vector v = (a, b) = ai + bj has parametric equations 

x = x0 + at,         y = y0 + bt 

(b) The line in 3-space that passes through the point P0(x0, y0, z0) and is parallel to the non-

zero vector v = (a, b, c) = ai + bj + ck has parametric equations 
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x = x0 + at,                 y = y0 + bt,            z = z0 + ct 

 

Example: Find parametric equations of the line (a) passing through (4, 2) and parallel to v = 

(−1, 5); (b) passing through (1, 2, −3) and parallel to v = 4i + 5j − 7k; (c) passing through the 

origin in 3-space and parallel to v = (1, 1, 1). 

 

Solution: (a).       x0 = 4, y0 = 2, a = −1, and b = 5  

                                  x = 4 − t, y = 2 + 5t 

Solution: (b).            x = 1 + 4t,     y = 2 + 5t,        z = −3 − 7t 

Solution: (c).             x0 = 0,    y0 = 0,    z0 = 0,   a = 1,   b = 1, and   c = 1  

x = t, y = t, z = t 

Example: (a) Find parametric equations of the line L passing through the points P1(2, 4,−1) 

and P2(5, 0, 7). (b) Where does the line intersect the xy-plane? 

Solution: (a). The vector 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (3,−4, 8) is parallel to L and the point P1(2, 4,−1) lies on 

L, so it follows from equation that L has parametric equations 

x = 2 + 3t,   y = 4 − 4t,       z = −1 + 8t 

Had we used P2 as the point on L rather than P1, we would have obtained the equations 

x = 5 + 3t,        y = −4t,            z = 7 + 8t 

Solution: (b). the line intersects the xy-plane at the point where z = −1 + 8t = 0, that is, when 

𝑡 =
1

8
. Substituting this value of t in equation yields the point of intersection (𝑥, 𝑦, 𝑧) =

( 
19

8
,
7

2
, 0). 

1.5.2 Line Segments 

Sometimes one is not interested in an entire line, but rather some segment of a line. Paramet-

ric equations of a line segment can be obtained by finding parametric equations for the entire 

line, and then restricting the parameter appropriately so that only the desired segment is gen-

erated. 

Example: Find parametric equations describing the line segment joining the points P1(2, 4, −

1) and P2(5, 0, 7). 

Solution: From Example 2, the line through the pointsP1 andP2 has parametric equations x = 

2 + 3t, y = 4 − 4t, z = −1 + 8t. With these equations, the point P1 corresponds to t = 0 and P2 

to t = 1. Thus, the line segment that joins P1 and P2 is given by  
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x = 2 + 3t,      y = 4 − 4t,      z = −1 + 8t                 (0 ≤ t ≤ 1) 

1.5.3 Vector Equations of Lines 

We will now show how vector notation can be used to express the parametric equations of a 

line more compactly. Because two vectors are equal if and only if their components are equal, 

can be written in vector form as 

(x, y) = (x0 + at, y0 + bt) 

(x, y, z) = (x0 + at, y0 + bt, z0 + ct) 

or, equivalently, as 

(x, y) = (x0, y0) + t(a, b)                                           (1) 

(x, y, z) = (x0, y0, z0) + t(a, b, c)                                (2) 

For the equation in 2-space we define the vectors r, r0, and v as 

r = (x, y),   r0 = (x0, y0),   v = (a, b)                           (3) 

and for the equation in 3-space we define them as 

r = (x, y, z),     r0 = (x0, y0, z0),      v = (a, b, c)        (4) 

Substituting (3) and (4) in (1) and (2), respectively, yields the equation 

r = r0 + tv 

 

In this equation, v is a nonzero vector parallel to the line, and r0 is a vector whose compo-

nents are the coordinates of a point on the line. 

We can interpret Equation (4) geometrically by positioning the vectors r0 and v with their 

initial points at the origin and the vector tv with its initial point at P0 (see figure). The vector 

tv is a scalar multiple of v and hence is parallel to v and L. Moreover, since 
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Example: The equation 

                                       (x, y, z) = (−1, 0, 2) + t (1, 5, −4) 

is of form (4) with 

                                          r0 = (−1, 0, 2) and v = (1, 5, −4) 

Thus, the equation represents the line in 3-space that passes through the point (−1, 0, 2) and is 

parallel to the vector (1, 5, −4). 

Example: Find an equation of the line in 3-space that passes through the points P1(2, 4,−1) 

and P2(5, 0, 7). 

Solution: The vector 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (3,−4, 8) is parallel to the line, so it can be used as v in (4). For 

r0 we can use either the vector from the origin to P1 or the vector from the origin to P2. Using 

the former yields r0 = (2, 4, −1) 

Thus, a vector equation of the line through P1 and P2 is 

(x, y, z) = (2, 4, −1) + t (3, −4, 8) 

If needed, we can express the line parametrically by equating corresponding components on 

the two sides of this vector equation, in which case we obtain the parametric equations in Ex-

ample 2 (verify). 

 

  


