Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

1.6 PLANES IN 3-SPACE

1.6.1 Planes Parallel to the Coordinate Planes

Based on below figure,

The graph of x = a is the plane through (a, 0, 0) that is parallel to the yz-plane,
The graph of y = b is the plane through (0, b, 0) that is parallel to the xz-plane,
The graph of z = c is the plane through (0, 0, c) that is parallel to the xy-plane.

I[O, Ilf'}/

1.6.2 Planes Determined by a Point and a Normal Vector

- Anplane in 3-space can be determined uniquely by speci-
fying a point in the plane and a vector perpendicular to
the plane (see figure). A vector perpendicular to a plane
is called a normal to the plane.

- Suppose that we want to find an equation of the plane

passing through Po(Xo, Yo, Zo) and perpendicular to the

vector n = (a, b, ). Define the vectors ro and r as
The colored plane is determined

o = (Xo, Yo, Zo) andr = (X, Y, Z) uniquely by the point P and the
. . . vector m perpendicular to the plane.
- It should be evident from Figure that the plane consists

precisely of those points P(x, y, z) for which the vector

r — rp is orthogonal to n; or, expressed as an equation,

n.(r—rp)=0

Py, Vo Zg)

/

from which we obtain 0
a(Xx—Xo) +b(y—Yo)+c(z-2)=0
This is called the point-normal form of the equation of a plane.

If preferred, we can express this vector equation in terms of com-

ponents as (@, b,c).(X—Xo,Y—VY0,Z2—20) =0
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Example: Find an equation of the plane passing through the point (3, —1, 7) and perpendicu-
lar to the vector n = (4, 2, -5).
Solution: a point-normal form of the equation is
4(x—3)+2(y+1)—-5z—-7)=0
4,2, 5).x-3,y+1,z-7)=0

we obtain an equation of the form

ax+by+cz+d=0

4x+2y—-52+25=0
The following theorem shows that every equation represents a plane in 3-space.
Theorem
If a, b, ¢, and d are constants, and a, b, and c are not all zero, then the graph of the equation

ax+by+cz+d=0
is a plane that has the vector n = (a, b, ¢) as a normal.
Example: Determine whether the planes 3x — 4y + 52 = 0 and — 6x + 8y — 10z — 4 = 0 are
parallel.
Solution: It is clear geometrically that two planes are parallel if and only if their normals are
parallel vectors. A normal to the first plane is

n; = (3, -4, 5)
and a normal to the second plane is
n, = (-6, 8, —10)

Since n; is a scalar multiple of ny, the normals are parallel, and hence so are the planes.
Example: Find an equation of the plane through the points Py(1, 2,-1), P»(2, 3, 1), and
P3(3,-1, 2).
Solution: Since the points Py, P,, and P lie in the plane, the vectors PP, = (1,1,2) and

P, P; = (2,—3,3) are parallel to the plane. Therefore,

L i j Kk
P1P2XP1P3: 1 1 2
2 =3 3

is normal to the plane, since it is orthogonal to both P,P, and TPQ. By using this normal and
the point P1(1, 2,—1) in the plane, we obtain the point-normal form
Ox—1)+(y—-2)—-5z+1)=0
which can be rewritten as
Ox+y—-52-16=0
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Example: Determine whether the line x =3 + 8t, y =4 + 5t, z = -3 — t is parallel to the plane
X—3y+5z=12.

Solution: The vector v = (8, 5, —1) is parallel to the line and the vector n = (1, —3, 5) is nor-
mal to the plane. For the line and plane to be parallel, the vectors v and n must be orthogonal.
But this is not so, since the dot product v. n = (8)(1) + (5)(-3) + (—1)(5) = —12 is nonzero.

Thus, the line and plane are not parallel. (v . n =0 then right angle)

Example: Find the intersection of the line and plane in the previous example.
Solution: If we let (Xo, Yo, Zo) be the point of intersection, then the coordinates of this point
satisfy both the equation of the plane and the parametric equations of the line. Thus,

Xo — 3Yyo + 529 =12 1)
and for some value of t, say t = to,

Xo=3+8ty,yo=4+5t,20=-3-t, (2)
Substituting (2) in (1) yields

(3 +8ty) —3(4 + 5tp) + 5(—3 —tp) =12
Solving for to yields to = —3 and on substituting this value in (2), we obtain
(%o, Yo, 20) = (21, 11, 0)

1.6.3 Intersecting Planes

- Two distinct intersecting planes determine two positive
angles of intersection—an (acute) angle 4 that satisfies the
condition 0 < # < #/2 and the supplement of that angle
(Figure a).

- If n; and ny are normals to the planes, then depending on
the directions of n; and n,, the angle 9 is either the angle
between n; and n; or the angle between n; and —n, (Fig-
ure b).

- In both cases, Theorem vyields the following formula for ™+
the acute angle & between the planes:

In; - ny|

cosf = ————
lImy [[[[m]|
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Example: Find the acute angle of intersection between the two planes 2x — 4y + 4z = 6 and
6x+2y—3z=4

Solution: The given equations yield the normals n; = (2,—4, 4) and n, = (6, 2,-3).

p |my - ng| |—8| 4
COsH = = — = —
Il Inzll 36449 21
4 .
1.6.4 Distance Problems Involving Planes
Fy
Considering three basic distance problems in 3-space: / T /
a. Find the distance between a point and a plane. I
I
b. Find the distance between two parallel planes. / o1 /
c. Find the distance between two skew lines.

Theorem

The distance D between a point Po(Xo, Yo, Zo) and the plane ax + by / \ /
|
+cz+d=0is
axg + byy +czg+d _—
D = /
va? + b? + ¢?

Example: Find the distance D between the point (1, —4, —3) and the plane 2x — 3y + 6z =-1

Solution: the plane be rewritten in the form ax +by +cz+d = 0.
Thus, we rewrite the equation of the given plane as

2x—3y+6z+1=0
from which we obtaina=2,b=-3,c=6,and d = 1.

@M+ +6(=3)+1 =33
JE+ (=32 + 62 7 7

D

Example: The planes x + 2y — 2z = 3 and 2x + 4y — 4z = 7 are parallel since their normals, (1,
2,—2) and (2, 4, —4), are parallel vectors. Find the distance between these planes.
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Solution: To find the distance D between the planes, we can select an arbitrary point in one
of the planes and compute its distance to the other plane. By setting y = z = 0 in the equation
X + 2y — 2z = 3, we obtain the point Py(3, 0, 0) in this plane.

The distance from Py to the plane 2x + 4y —4z =7 is

_ @3 +40) +(-H(0) 7] _ 1

27 4 42 4 (—4)2 6

Example: It was shown in previous example that the lines Li: x=1+4t,y=5—-4t,z=-1+
5t L:x=2+8t,y=4-3t,z=5+tare skew. Find the distance between them.

Solution: Let P; and P, denote parallel planes containing L; and

L., respectively (see figure). 0,(2,4.5)
- To find the distance D between L; and L, we will calcu- V fﬁﬁ/
late the distance from a point in P1 to the plane P.. D
- Since L; lies in plane P1, we can find a point in P; by P, !, ~_ /
finding a point on the line L;; we can do this by substitut- Qy(1, 5, _n '“m

ing any convenient value of t in the parametric equations of L;. The simplest choice is
t = 0, which yields the point Q4(1, 5,-1).

- The next step is to find an equation for the plane P,. For this purpose, observe that the
vector u; = (4, —4, 5) is parallel to line L3, and therefore also parallel to planes P, and
P,.

- Similarly, u, = (8, =3, 1) is parallel to L, and hence parallel to P; and P..

Therefore, the cross product

i K
n=u xu =4 —4 3 = 11i + 36j + 20k
8 -3 1

is normal to both P; and P,. Using this normal and the point Q2(2, 4, 5) found by setting t =0
in the equations of L,, we obtain an equation for P:
11(x—2)+36(y —4)+20(z—-5)=0
or
11x + 36y + 20z — 266 =0
The distance between Q;(1, 5,—1) and this plane is

p = 1ADDM +36)(5) +(20)(—1) —266] _ 95
V112 4+ 367 + 207 v 1817
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1.7 QUADRIC SURFACES

- Although the general shape of a curve in 2-space can be obtained by plotting points,
this method is not usually helpful for surfaces in 3-space because too many points are
required.

- It is more common to build up the shape of a surface
with a network of mesh lines, which are curves ob-
tained by cutting the surface with well-chosen planes.

- For example, the figure shows the graph of z = x* —
3xy? rendered with a combination of mesh lines and
colorization to produce the surface detail. This surface
is called a “monkey saddle” ]].

- The mesh line that results when a surface is cut by a

plane is called the trace of the surface in the plane (see

figure).
A monkey saddle
; Z
=k
VE (0, 0, k)
MH .
HHHH - -
S
T Iy
Lol T

We noted that a second-degree equation
Ax? +Bxy + Cy> + Dx +Ey + F =0

represents a conic section (possibly degenerate). The analog of this equation in an xyz-
coordinate system is

AX? + By’ + Cz? + Dxy + Exz + Fyz + Gx + Hy + 12+ J =0
which is called a second-degree equation in X, y, and z. The graphs of such equations are
called quadric surfaces or sometimes quadrics.
Six common types of quadric surfaces are shown in the following table—ellipsoids, hyperbo-

loids of one sheet, hyperboloids of two sheets, elliptic cones, elliptic paraboloids, and hyper-
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bolic paraboloids. (The constants a, b, and c that appear in the equations in the table are as-

sumed to be positive.)

SURFACE EQUATION SURFACE EQUATION
@y

T T =_+_

® ¥y z PER

—+=s+==1

at 8ot
The traces in the coerdinats
plancs arz ellipses, as are the
Lroces in Lhose plancs that ar=
parallal 1o the coordinzse planes
und inlerssrl he surfoce in maome
Lhan cne jpoinl.

The iraoe in the cy-plane iz o
point{the arigzinh, and the traces
in planes parallel Lo the xy-plane
arz ellipses. The traces in the yz-
and xz-planes er= pairs of lines
inlzrepcting a2 the orizin, The
traces in planes parallel 1o Lhese
ars hyperbolas.

HYFERBDLOID:
OF ONE SHEET

5 x T

—=+ }I_J - z:

a b c
The rece in the sy-plane is aa
ellipss, as ore the traces in
planes pamllel o e y-plane.
The reces in the yz-planz ond
az-plaze ore hyperhelas, o ez
the traces. in those plancs that sme
jparzll=] o thes= and do nol pass
throazh the x- or p-inlercepts.
At these inleroepls Lhe races =
jpairs of inlersecling lines.

o= 12 . 32

P
Thetrece in the sy-planz is 2
poinl{the origink, and the traces
in plznes paralled 1o and chove
tha ry-plase are cllipses. The
traces in the ¥7- and a-planes
ar= parahelas, 25 202 the Lroces in
plenes parallel 1o thase.

HYFERBOLOIDN
OF TWO EHEETS

Ther= is no trace in the xy-plan=.
In planes parzllz] to the 1y-plene
that intersect the surfoce in morz
than coe point the Lroces 2
ellipse=. In Uhe y7- 2nd xz-planes,
the traces. are hyperbelas, @ e
the traces. in those planes that sm
parzll=] o thoesa

P I

=5-5

b ooa

The iraoe in the cy-plan= is a
jpair of lings inlersecting ol the
origin. The roces in planss
parzlld to the sy-plans arz
byperbalas. The hyperbolis
abowe the oy-planz open in the
y-dir=ction, and Lthose below in
the x-direction. The races in the
37- and xz-planes are parnbalos,
ax ore-the traces in planses

parzlld fo thesz

1.7.1 Techniques for Graphing Quadric Surfaces

A rough sketch of an ellipsoid

x2 y2 Z2

§+ﬁ+c_2:1 (a>0,b>0,c>0)

can be obtained by first plotting the intersections with the coordinate axes, and then sketching
the elliptical traces in the coordinate planes.
Example: Sketch the ellipsoid

46



Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Solution: The x-intercepts can be obtained by setting y = 0 and
z = 0 in. This yields x = £2. Similarly, the y-intercepts are y =

+4, and the z-intercepts are z = 3. Sketching the elliptical trac-

es in the coordinate planes yields the graph in the figure.

Example: Sketch the graph of the hyperboloid of one sheet

-

g | il -
4ty ——=1

4

Solution: The trace in the xy-plane, obtained by setting z = 0, is

X +y?=1(z=0)

which is a circle of radius 1 centered on the z-axis. The traces in

the planes z = 2 and z = -2, obtained by setting z = £2, are given

by
X2 +y? =2 (z2=42)

which are circles of radius V2 centered on the z-axis. Joining

these circles by the hyperbolic traces in the vertical coordinate

planes yields the graph in the following figure.
Example: Sketch the graph of the hyperboloid of two sheets

Solution: The z-intercepts, obtained by settingx =0andy =
0, are z = +1. The traces in the planes z = 2 and z = -2, ob-

tained by setting z = £2 in (10), are given by

[

.!.': +
3

L

1 (=22

]

Sketching these ellipses and the hyperbolic traces in the ver-
tical coordinate planes yields the following figure.
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