Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Example: Sketch the graph of the elliptic cone

-
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Solution: The traces in the planes z = £1 are given by
o] "-'J f4 0 1Y T
x4+ — =1 (z ==xl)
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Sketching these ellipses and the linear traces in the verti-

cal coordinate planes yields the graph in the figure.

Example: Sketch the graph of the elliptic paraboloid
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Solution: The trace in the plane z =1 is

1.2 "I': f 2 ) A1

Tl o =) (-3,1) {201
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Sketching this ellipse and the parabolic traces in the vertical —(2,0,1)—" 5=

4

coordinate planes yields the graph in the figure. x

Example: Sketch the graph of the hyperbolic paraboloid

_r_x
z="—7 @
Solution. Setting x =0 in (a) yields

Y
4

which is a parabola in the yz-plane with vertex at the origin and opening in the positive z-
direction (since z > 0), and setting y = 0 yields
2
x

Z=—?

which is a parabola in the xz-plane with vertex at the origin and opening in the negative z-

direction.

The trace in the planez=1is

2,2
yrooxt _
1 9—1 (z=1)
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

which is a hyperbola that opens along a line parallel to the y-axis, and the trace in the plane z
=-1is
x2 yZ

?—Zzl (Z:—l)

which is a hyperbola that opens along a line parallel to the x-axis. Combining all of the above

information leads to the sketch in Figure.

Trace inz =1
/ . \

1.7.2 Translations of Quadric Surfaces

Example: Describe the surface z = (x — 1)% + (y + 2)° + 3.
Solution. The equation can be rewritten as
2-3=(x—1)"+(y+2)’
This surface is the paraboloid that results by translating the paraboloid
=2 + y2
in Figure so that the new “vertex” is at the point (1,—2, 3). A rough sketch of this paraboloid

is shown in Figure.

*2

Example: Describe the surface
A+ A+ 2+ 8y —d7=—4
Solution. Completing the squares yields
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

4P A4+ 1P+ (-2 =—-4+4+4

X+ +HDE+

4

(z —-2) _

1

Thus, the surface is the ellipsoid that results when the ellipsoid

Xyt

2

4

]

=1

is translated so that the new “center” is at the point (0,—1, 2). A rough sketch of this ellipsoid

is shown in Figure.

- (0-1,2)

LA

x

1.7.3 A Technique for Identifying Quadric Surfaces

IDENTIFYING A QUADRIC SURFACE FROM THE FORM OF ITS EQUATION

2 2 2 2 2 L2 2 42 32 2 42 x2 42 2 42
EQUATION Er, o g2 Y2 L Yool -Z Yoo ,- XX 9
al B 2 at B2 2 & P at bt at B Bt a2
One linear term; | One linear term;
. . . . . . . two quadratic t drati
CHARACTERISTIC | No minus signs | One minus sign | Two minus signs | No linear terms qua WO quiactatic
terms with the | terms with
same sign opposite signs
L Hyperboloid Hyperboloid L Elliptic Hyperbolic
CLASSIFICATION Ellipsoid ype YP Elliptic cone pue IP=re
of one sheet of two sheets paraboloid paraboloid

1.8 CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

Three coordinates are required to establish the location of a point in 3-space. We have already

done this using rectangular coordinates. However, figures (a, b, ¢) show two other possibili-

ties:
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

- part (a) of the figure shows the rectangular coordinates (X, y, z) of a point P,
- part (b) shows the cylindrical coordinates (7, 6, z) of P,
- part (c) shows the spherical coordinates (p, 6, ¢) of P.
In a rectangular coordinate system the coordinates can be any real numbers, but in cylindri-

cal and spherical coordinate systems there are restrictions on the allowable values of the co-

ordinates.
IC T.C
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_ ) Cylindrical coordinates Spherical coordinates
Rectangula .t:lfunrl:hwath:. (r.8.2) (p. 0. )
(x. . 2) (rz0,0<#<2nm) (pz0,026<2n,0<d=m)
(a) (k) (ch
1.8.1 Constant Surfaces
In rectangular coordinates the surfaces represented by equa-
tions of the form ‘[
X = Xo, Y= Yo, and z = zg 20 x=2x

where Xo, Yo, and zo are constants, are planes parallel to the '
yz-plane, xz-plane, and xy-plane, respectively (see figure). In /_ ‘T4

cylindrical coordinates the surfaces represented by equations Xo—da b —
of the form / g Yo
X .

r=ro, 6= 06y and z = z

where rg, 8y, and zg are constants, are shown in the follow-

ing figure:
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

* The surface r = rq is a right circular cylinder of radius r, centered on the z-axis.
* The surface 6 = 0 is a half-plane attached along the z-axis and making an angle &y with the
positive x-axis.

* The surface z = zq is a horizontal plane.

In spherical coordinates the surfaces represented by equations of the form
p = po, 0= 6, and ¢ = g

Where po, 6o, and ¢, are constants, are shown in the following figure:

* The surface p = pg consists of all points whose distance p from the origin is po.

Assuming po to be nonnegative, this is a sphere of radius po cen-

tered at the origin.

. ﬁ'-'f" = '7||-I:'I
* As in cylindrical coordinates, the surface 8 = 6, is a half-plane [

attached along the z-axis, making an angle of 6, with the posi-

tive x-axis. P=Po \ y
P o

 The surface ¢ = ¢ consists of all points from which a line m '

segment to the origin makes an angle of ¢o with the positive z-

axis. If 0 < ¢g < /2, this will be the nappe of a cone opening up, ! \ 0 =t
while if 7/2 < ¢y < =, this will be the nappe of a cone opening down. (If po = #/2, then the

cone is flat, and the surface is the xy-plane.)
1.8.2 Converting Coordinates

Just as we needed to convert between rectangular and polar coordinates in 2-space, so we will
need to be able to convert between rectangular, cylindrical, and spherical coordinates in 3-

space. The following table provides formulas for making these conversions.

CONVERSION FORMULAS FOR COORDINATE SYSTEMS

CONVERSION FORMULAS RESTRICTIONS

Cylindrical to rectangular (rn#,2) = (x.y,2) | x=rcosf, y=rsinf, z=2
Rectangular to cylindrical x,y.2)—(r.60,2) r=\x2+y% tanf= y/x, 2=z

. o . > >
Spherical to cylindrical (p.0,.¢d) = (r.8,z) | r=psind, #=6, z=pcosd 8;%2 511'0
Cylindrical to spherical (r.0.2) = (p.0.¢) | p=Nr’+z°, 0=0, tand=r/z 0 ; b
Spherical to rectangular (p,0.d) = (x,y,2) | x=psindcosH, y=psingdsinf, z=pcosg
Rectangular to spherical (r,y.2) = (p.0.¢d) | p=vx>+y +7% tanf=y/x, cosd =zN\x>+y>+7°
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

The diagrams in the following figure will help you to under-

stand how the formulas in the table are derived.

For example, part (a) of the figure shows that in converting be-
tween rectangular coordinates (X, y, z) and cylindrical coordi-
nates (r, 6, z), we can interpret (r, ) as polar coordinates of (x,
y). Thus, the polar-to-rectangular and rectangular-to-polar con-
version formulas (1) and (2) provide the conversion formulas

between rectangular and cylindrical coordinates in the table.

Part (b) of Figure suggests that the spherical coordinates (p, 6,
@) of a point P can be converted to cylindrical coordinates (7, 6,
z) by the conversion formulas

r=psing, 6=0,z=pcos g Q)
Moreover, since the cylindrical coordinates (, 6, z) of P can be
converted to rectangular coordinates (X, y, z) by the conversion
formulas

X=rcosf,y=rsinf, z=z2 2

iy, 2
& 4 ir,f,2)
I v
_\ .
o
i
Vs 3 ir. 6, 0
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L(r.0,2)

'l r
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2]

Comparison of coordinate systems

We can obtain direct conversion formulas from spherical coordinates to rectangular coordi-

nates by substituting (1) in (2). This yields

X=psingpcosb, y=psingsing, z=pcosgp
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Chapter 1: Rectangular Coordinate systems in 3-space and Vectors

Example:
(a) Find the rectangular coordinates of the point with cylindrical coordinates
(r, 0,z) =4, n/3, —3)
(b) Find the rectangular coordinates of the point with spherical coordinates
(p, 6, p) = (4, n/3, n/4)
Solution (a): Applying the cylindrical-to-rectangular conversion formulas in the table yields

T . .
.r=rcos;h‘=ricu:rﬁi=f_ }'=.f'5111-.";=f11-5111—_*=2\-'"l3. 1=-3

Thus, the rectangular coordinates of the point are (x, y, z) = (2, 2V3, —3) (see figure).

/

cylindrical: (4, x/3, -3)
rectangular: (2, 243, -3)

f e 1|

Solution (b): Applying the spherical-to-rectangular conversion formulas in the table yields

s

. , T 7
x = psingcosf = 4sin IE‘DST =2

. . ., T . —
y=psingsinfd = rissmE smi =4/

I=pcos¢g = ricusg: 22

The rectangular coordinates of the pointare  (x. v. z) = (+/2, V6. 24/2)

VB

V2 /

4/

a3 /

X

spherical: (4, /3, x/4)
rectangular: (vZ, V&, 22)
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Example: Find the spherical coordinates of the point that has
rectangular coordinates

(X, Y, z) = (4, —4, 46)
Solution: From the rectangular-to-spherical conversion formu-

las in the table we obtain

p=il+y +2=T6+16+06 = /T8 =82

v
tan# = — = —1

X
z 4
I+ 2 8

COs g =

Sl
15

42

6
gt

I/

:\\‘“

rectangular: (4, —4, 446}
spherical: (82, Tr/4, n/6)

From the restriction 0 < 6 < 2z and the computed value of tan 0, the possibilities for 0 are 6 =

3n/4 and 0 = 7Tn/4. However, the given point has a negative y-coordinate, so we must have 0 =

77/4. Moreover, from the restriction 0 < ¢ <z and the computed value of cos ¢, the only pos-

sibility for ¢ is ¢ = 7/6. Thus, the spherical coordinates of the point are (p, 6, p) = (8\2, 77/4,

7/6).

1.8.3 Equations of Surfaces in Cylindrical and Spherical Coordinates

CONE CYLINDER SPHERE PARABOLOID HYPERBOLOID
) 4 - - ! Z
Ty i . Ty CT—a
; x .1"“/ : / :
I I I x X
I
| ] 7 3 4] 7 7 2 2 4] 9 9
RECTANGULAR I=x"+y- -+y-=1 x+y4ze=1 I=xX=+y- +y—z==1
2 ) 2 2
CYLINDRICAL I=r r=1 ==1l-r I=r" ==r--1
SPHERICAL b = m/4 p=Ccsco p=1 p =cos ¢ cscld pl=—sec2db
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