2.2 CALCULUS OF VECTOR-VALUED FUNCTIONS

2.2.1 Limits and Continuity

- A vector-valued function $\mathbf{r}(t)$ in 2-space or 3-space to approach a limiting vector \mathbf{L} as t approaches a number a. That is, we want to define

$$
\lim _{\boldsymbol{t} \rightarrow \boldsymbol{a}} \mathbf{r}(t)=\mathbf{L}
$$

- position $\mathbf{r}(t)$ and \mathbf{L} with their initial points at the origin and interpret this limit to mean that the terminal point of $\mathbf{r}(t)$ approaches the terminal point of \mathbf{L} as t approaches a or, equivalently, that the vector $\mathbf{r}(t)$ approaches the vector \mathbf{L} in both length

$\mathbf{r}(t)$ approaches \mathbf{L} in length and direction if $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}$. and direction at t approaches a (see figure). Algebraically, this is equivalent to stating that

$$
\lim _{t \rightarrow a}\|\mathbf{r}(t)-\mathbf{L}\|=\mathbf{0}
$$

(the following figure). Thus, we make the following definition.

$\|\mathbf{r}(t)-\mathbf{L}\|$ is the distance between terminal points for vectors $\mathbf{r}(t)$ and \mathbf{L} when positioned with the same initial points.

Definition Let $\mathbf{r}(t)$ be a vector-valued function that is defined for all t in some open interval containing the number a, except that $\mathbf{r}(t)$ need not be defined at a.

We will write

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}
$$

if and only if

$$
\lim _{\boldsymbol{t} \rightarrow \boldsymbol{a}}\|\mathbf{r}(t)-\mathbf{L}\|=\mathbf{0}
$$

THEOREM

(a) If $\mathbf{r}(t)=\langle x(t), y(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow a} x(t), \lim _{t \rightarrow a} y(t)\right\rangle=\lim _{t \rightarrow a} x(t) \mathbf{i}+\lim _{t \rightarrow a} y(t) \mathbf{j}
$$

provided the limits of the component functions exist. Conversely, the limits of the component functions exist provided $\mathbf{r}(t)$ approaches a limiting vector as t approaches a.
(b) If $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$, then

$$
\begin{aligned}
\lim _{t \rightarrow a} \mathrm{r}(t) & =\left\langle\lim _{t \rightarrow a} x(t), \lim _{t \rightarrow a} y(t), \lim _{t \rightarrow a} z(t)\right\rangle \\
& =\lim _{t \rightarrow a} x(t) \mathbf{i}+\lim _{t \rightarrow a} y(t) \mathbf{j}+\lim _{t \rightarrow a} z(t) \mathbf{k}
\end{aligned}
$$

provided the limits of the component functions exist. Conversely, the limits of the component functions exist provided $\mathbf{r}(t)$ approaches a limiting vector as t approaches a.

Example: Let $\mathbf{r}(t)=t^{2} \mathbf{i}+\mathrm{e}^{t} \mathbf{j}-2 \cos (\pi t) \mathbf{k}$. Then

$$
\lim _{t \rightarrow 0} \mathbf{r}(t)=\left(\lim _{t \rightarrow 0} t^{2}\right) \mathbf{i}+\left(\lim _{t \rightarrow 0} e^{t}\right) \mathbf{j}-\left(\lim _{t \rightarrow 0} 2 \cos \pi t\right) \mathbf{k}=\mathbf{j}-2 \mathbf{k}
$$

Alternatively, using the angle bracket notation for vectors,

$$
\lim _{t \rightarrow 0} \mathrm{r}(t)=\lim _{t \rightarrow 0}\left\langle t^{2}, e^{t},-2 \cos \pi t\right\rangle=\left\langle\lim _{t \rightarrow 0} t^{2}, \lim _{t \rightarrow 0} e^{t}, \lim _{t \rightarrow 0}(-2 \cos \pi t)\right\rangle=\langle 0,1,-2\rangle
$$

Motivated by the definition of continuity for real-valued functions, we define a vector valued function $\mathbf{r}(t)$ to be continuous at $t=a$ if

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)
$$

That is, $\mathbf{r}(a)$ is defined, the limit of $\mathbf{r}(t)$ as $t \rightarrow a$ exists, and the two are equal. As in the case for real-valued functions, we say that $\mathbf{r}(t)$ is continuous on an interval I if it is continuous at each point of I [with the understanding that at an endpoint in I the two-sided limit in (above equation) is replaced by the appropriate one-sided limit].

A vector-valued function is continuous at $t=a$ if and only if its component functions are continuous at $t=a$.

2.2.2 Derivatives

The derivative of a vector-valued function is defined by a limit similar to that for the derivative of a real-valued function.

Definition If $\mathbf{r}(t)$ is a vector-valued function, we define the derivative of \mathbf{r} with respect to t to be the vector-valued function \mathbf{r} given by

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

The domain of \mathbf{r} consists of all values of t in the domain of $\mathbf{r}(t)$ for which the limit exists.
-The function $\mathbf{r}(t)$ is differentiable at t if the limit exists.
-The derivative of $\mathbf{r}(t)$ can be expressed as

$$
\frac{d}{d t}[\mathbf{r}(t)], \quad \frac{d \mathbf{r}}{d t}, \quad \mathbf{r}^{\prime}(t), \quad \text { or } \quad \mathbf{r}^{\prime}
$$

It is important to keep in mind that $\mathbf{r}(t)$ is a vector, not a number, and hence has a magnitude and a direction for each value of t [except if $\mathbf{r}(t)=\mathbf{0}$, in which case $\mathbf{r}(t)$ has magnitude zero but no specific direction].

(a)

(b)

(c)

These illustrations show the graph C of $\mathbf{r}(t)$ (with its orientation) and the vectors $\mathbf{r}(t), \mathbf{r}(t+h)$, and $\mathbf{r}(t+h)-\mathbf{r}(t)$ for positive h and for negative h.

In both cases, the vector $\mathbf{r}(t+h)-\mathbf{r}(t)$ runs along the secant line joining the terminal points of $\mathbf{r}(t+h)$ and $\mathbf{r}(t)$, but with opposite directions in the two cases. In the case where h is positive the vector $\mathbf{r}(t+h)-\mathbf{r}(t)$ points in the direction of increasing parameter, and in the case where h is negative it points in the opposite direction. However, in the case where h is negative the direction gets reversed when we multiply by $1 / h$, so in both cases the vector

$$
\frac{1}{h}[\mathbf{r}(t+h)-\mathbf{r}(t)]=\frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

points in the direction of increasing parameter and runs along the secant line. As $h \rightarrow 0$, the secant line approaches the tangent line at the terminal point of $\mathbf{r}(t)$, so we can conclude that the limit

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

(if it exists and is nonzero) is a vector that is tangent to the curve C at the tip of $\mathbf{r}(t)$ and points in the direction of increasing parameter (Figure c). We can summarize all of this as follows.

Geometric interpretation of the derivative

Suppose that C is the graph of a vector-valued function $\mathbf{r}(t)$ in 2-space or 3 -space and that $\mathbf{r}^{-}(t)$ exists and is nonzero for a given value of t. If the vector $\mathbf{r}^{-}(t)$ is positioned with its initial point at the terminal point of the radius vector $\mathbf{r}(t)$, then $\mathbf{r}^{-}(t)$ is tangent to C and points in the direction of increasing parameter.

Theorem

If $\mathbf{r}(t)$ is a vector-valued function, then \mathbf{r} is differentiable at t if and only if each of its component functions is differentiable at t, in which case the component functions of $\mathbf{r}^{-}(t)$ are the derivatives of the corresponding component functions of $\mathbf{r}(t)$.

Proof

For simplicity, we give the proof in 2 -space; the proof in 3-space is identical, except for the additional component. Assume that $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$. Then

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[x(t+h) \mathbf{i}+y(t+h) \mathbf{j}]-[x(t) \mathbf{i}+y(t) \mathbf{j}]}{h} \\
& =\left(\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}\right) \mathbf{i}+\left(\lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}\right) \mathbf{j} \\
& =x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}
\end{aligned}
$$

Example: Let $\mathbf{r}(t)=t^{2} \mathbf{i}+e^{t} \mathbf{j}-2 \cos (\pi t) \mathbf{k}$. Then
Solution:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\frac{d}{d t}\left(t^{2}\right) \mathbf{i}+\frac{d}{d t}\left(e^{t}\right) \mathbf{j}-\frac{d}{d t}(2 \cos \pi t) \mathbf{k} \\
& =2 t \mathbf{i}+e^{t} \mathbf{j}+(2 \pi \sin \pi t) \mathbf{k}
\end{aligned}
$$

2.2.3 Derivative Rules

Theorem

(Rules of Differentiation)

Let $\mathbf{r}(t), \mathbf{r}_{1}(t)$, and $\mathbf{r}_{2}(t)$ be differentiable vector-valued functions that are all in 2 -space or all in 3-space, and let $f(t)$ be a differentiable real-valued function, k a scalar, and \mathbf{c} a constant vector (that is, a vector whose value does not depend on t). Then the following rules of differentiation hold:
(a) $\frac{d}{d t}[\mathrm{c}]=0$
(b) $\frac{d}{d t}[k \mathbf{r}(t)]=k \frac{d}{d t}[\mathbf{r}(t)]$
(c) $\frac{d}{d t}\left[\mathbf{r}_{1}(t)+\mathbf{r}_{2}(t)\right]=\frac{d}{d t}\left[\mathbf{r}_{1}(t)\right]+\frac{d}{d t}\left[\mathbf{r}_{2}(t)\right]$
(d) $\frac{d}{d t}\left[\mathbf{r}_{1}(t)-\mathbf{r}_{2}(t)\right]=\frac{d}{d t}\left[\mathbf{r}_{1}(t)\right]-\frac{d}{d t}\left[\mathbf{r}_{2}(t)\right]$
(e) $\frac{d}{d t}[f(t) \mathbf{r}(t)]=f(t) \frac{d}{d t}[\mathbf{r}(t)]+\frac{d}{d t}[f(t)] \mathbf{r}(t)$

