Chapter 2: Vector-Valued Functions

2.2 CALCULUS OF VECTOR-VALUED FUNCTIONS

2.2.1 Limits and Continuity

- A vector-valued function r(t) in 2-space or 3-space to approach
a limiting vector L as t approaches a number a. That is, we want 4
to define

limr(t) =L

t—-a

- position r(t) and L with their initial points at the origin and in-

terpret this limit to mean that the terminal point of r(t) ap-

proaches the terminal point of L as t approaches a or, equiva- | 1) approaches L in length
) and direction if lim rit) = L.
lently, that the vector r(t) approaches the vector L in both length =
and direction at t approaches a (see figure). Algebraically, this is equivalent to stating
that

lim|[r(t)—L||=0
t—a

(the following figure). Thus, we make the following definition.

||rit) = L|| is the distance between
terminal points for vectors rif) and
L. when positioned with the same
initial points.

Definition Let r(t) be a vector-valued function that is defined for all t in some open interval

containing the number a, except that r(t) need not be defined at a.

We will write
limr(t) =L

t-a

if and only if
lim||r(t) —L|| =0
t-a
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THEOREM
(a) Ifr(t) = {x(t), ¥(t)} = x(£)i+ y(t)], then
lim r(1) = (?u_ﬂ x(1), lim }'(r}} = lim x(8)i + lim y(1);

provided the limits of the component functions exist. Conversely, the limits of
the component functions exist provided r(t) approaches a limiting vector as t
approaches a.

(b)Y Ifr(t) = {x(t), ¥(t), z()) = x ()0 + ¥(1)j + z(t)K, then
Jim ) = (im 50, fim 70, Jim 2
= rli_{l};x[f)i + :]i_[rrlz vty + ,li_ﬂ z(H)k

provided the limits of the component functions exist. Conversely, the limits of
the component functions exist provided v(t) approaches a limiting vector as t
approaches a.

Example: Let r(t) = % + e'j — 2 cos (x t) k. Then
J[i_';ﬂ'j"f-'} = (‘lf_lflnfg) i+ (rli_r'_n E‘)_i - (rl!_:l;n E.l:-:usm) k=j—2k

Alternatively, using the angle bracket notation for vectors,

lim v(f) = lim {¢%, &', —2cosmt) = (]im t2, lim &', im{—Ecusm}) = (0,1, -2}
=0 =0 1—0 t—0 t—=0

Motivated by the definition of continuity for real-valued functions, we define a vector valued

function r(t) to be continuous att = a if

ltLIE r(t) =r(a)

That is, r(a) is defined, the limit of r(t) as t—a exists, and the two are equal. As in the case

for real-valued functions, we say that r(t) is continuous on an interval | if it is continuous at

each point of | [with the understanding that at an endpoint in | the two-sided limit in (above

equation) is replaced by the appropriate one-sided limit].

A vector-valued function is continuous at t = a if and only if its component functions are con-

tinuous att = a.
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2.2.2 Derivatives

The derivative of a vector-valued function is defined by a limit similar to that for the deriva-

tive of a real-valued function.

Definition If r(t) is a vector-valued function, we define the derivative of r with respect to t to
be the vector-valued function r given by

vif +h) —r(t)

|1"(I]l - rzli_r»"ﬂ h

The domain of r consists of all values of t in the domain of r(t) for which the limit exists.

-The function r(t) is differentiable at t if the limit exists.
-The derivative of r(t) can be expressed as

i['t] dr ‘(1 .f
S0l o e, er

It is important to keep in mind that r(t) is a vector, not a number, and hence has a magnitude
and a direction for each value of t [except if r(t) = 0, in which case r(t) has magnitude zero

but no specific direction].

Ay ri(t+h) —rit) &Y _ aY
ﬂ__-i rit+ R —rit) __R
o
f: ' rit) ' i)

rifh /l J )
¢ rit + h) ;"l C /L
x X x

h>0 h<0

(a) (b) (©)
These illustrations show the graph C of r(t) (with its orientation) and the vectors r(t), r(t + h),
and r(t + h) — r(t) for positive h and for negative h.

In both cases, the vector r(t + h) — r(t) runs along the secant line joining the terminal points
of r(t + h) and r(t), but with opposite directions in the two cases. In the case where h is posi-
tive the vector r(t + h) — r(t) points in the direction of increasing parameter, and in the case
where h is negative it points in the opposite direction. However, in the case where h is nega-
tive the direction gets reversed when we multiply by 1/h, so in both cases the vector

et 41— rey] = LD X0
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points in the direction of increasing parameter and runs along the secant line. As h—0, the
secant line approaches the tangent line at the terminal point of r(t), so we can conclude that
the limit

r(t +h) —r(r)
h

rit) = lim
I:] fi—10

(if it exists and is nonzero) is a vector that is tangent to the curve C at the tip of r(t) and
points in the direction of increasing parameter (Figure ¢). We can summarize all of this as

follows.

Geometric interpretation of the derivative

Suppose that C is the graph of a vector-valued function r(t) in 2-space or 3-space and that
r- (t) exists and is nonzero for a given value of t . If the vector r - (t) is positioned with its
initial point at the terminal point of the radius vector r(t), then r - (t) is tangent to C and points

in the direction of increasing parameter.

Theorem
If r(t) is a vector-valued function, then r is differentiable at t if and only if each of its compo-
nent functions is differentiable at t, in which case the component functions of r~ (t) are the

derivatives of the corresponding component functions of r(t).

Proof
For simplicity, we give the proof in 2-space; the proof in 3-space is identical, except for the
additional component. Assume that r(t) = x(t)i + y(t)j. Then

rit+ i) —rig)

o = Jim,

_ iy [FC R+ 3+ )] = @ + y()i]
h=10 fi
_ (lim x(t+h) —x{t}) - (iim yit +h)y — }-{r})j
fi— 0 h =0 i

= x'(0i + ()]
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Example: Let r(t) = t?i + e'j — 2 cos (zf)k. Then

Solution:
. d . d . d _
rit) = dr{r n+ dr{e - Il:“{2*:1:-5.?1']1[\“

= 2ti + €'j + (2w sin 7wt )k

2.2.3 Derivative Rules

Theorem

(Rules of Differentiation)

Let r(t), ri(t), and ry(t) be differentiable vector-valued functions that are all in 2-space or all
in 3-space, and let f(t) be a differentiable real-valued function, k a scalar, and ¢ a constant
vector (that is, a vector whose value does not depend on t). Then the following rules of differ-
entiation hold:

@ Zie1=0

d
(b) —[kr(t)] = EE[P(IJI

dt
d d {
{c) E[n{t}l +r2(t)] = E[l'](fj] + %ll?{f}]

d

el d
(d) E[l‘l{f} —ra(t)] = E[FI(IH ~ [r2(f)]

(e) E[J‘(Ul (U]—J‘(fid! [1 (r)]Tdr [F(£)]e(r)
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