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2.2.1 Tangent Lines to Graphs of Vector-Valued Functions 

 

Definition Let P be a point on the graph of a vector-valued function r(t), and let r(t0) be the 

radius vector from the origin to P (see below figure). If r′(t0) exists and r′(t0) ≠ 0, then we 

call r′(t0) a tangent vector to the graph of r(t) at r(t0), and we call the line through P that is 

parallel to the tangent vector the tangent line to the graph of r(t) at r(t0). 

 

Let r0 = r(t0) and v0 = r′ (t0). The tangent line to the graph of r(t) at r0 is given by the vector 

equation 

r = r0 + tv0 

 

Example: Find parametric equations of the tangent line to the circular helix 

x = cos t, y = sin t, z = t 

where t = t0, and use that result to find parametric equations for the tangent line at the point 

where t = π. 

Solution: The vector equation of the helix is 

r(t) = cos t i + sin t j + t k 

r0 = r(t0) = cos t0i + sin t0 j + t0k 

v0 = r′(t0) = (−sin t0)i + cos t0 j + k 

The vector equation of the tangent line at t = t0 is 

r = cos t0i + sin t0 j + t0k + t [(−sin t0)i + cos t0 j + k] 

= (cos t0 − t sin t0)i + (sin t0 + t cos t0)j + (t0 + t)k 

Thus, the parametric equations of the tangent line at t = t0 are 

x = cos t0 − t sin t0, y= sin t0 + t cos t0, z= t0 + t 

In particular, the tangent line at t = π has parametric equations 

x = −1, y= −t, z = π + t 

The graph of the helix and this tangent line are shown in figure. 
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Example: Let  

r1(t) = (tan
−1

 t)i + (sin t)j + t
2
k 

and 

r2(t) = (t
2
 − t)i + (2t − 2)j + (ln t)k 

The graphs of r1(t) and r2(t) intersect at the origin. Find the degree measure of the acute angle 

between the tangent lines to the graphs of r1(t) and r2(t) at the origin. 

Solution: The graph of r1(t) passes through the origin at t = 0, where its tangent vector is 

𝑟́1(0) = 〈
1

1 + 𝑡2
, cos 𝑡 , 2𝑡〉|

𝑡=0
= 〈1, 1, 0〉 

The graph of r2(t) passes through the origin at t = 1 (verify), where its tangent vector is 

𝑟́2(1) = 〈2𝑡 − 1, 2,
1

𝑡
〉|

𝑡=1
= 〈1, 2, 1〉 

the angle θ between these two tangent vectors satisfies 

cos 𝜃 =
〈1, 1, 0〉 ∙ 〈1, 2, 1〉

‖〈1, 1, 0〉‖‖〈1, 2, 1〉‖
=

1 + 2 + 0

√2√6
=

3

√12
=

√3

2
 

 

It follows that θ = π/6 radians, or 30
◦
. 
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2.2.2 Derivatives of Dot and Cross Products 

The following rules, which are derived in the exercises, provide a method for differentiating 

dot products in 2-space and 3-space and cross products in 3-space. 

(a) 

(b) 

Theorem 

 If r(t) is a differentiable vector-valued function in 2-space or 3-space and ǀǀr(t)ǀǀ is constant 

for all t, then  

r(t) . r′(t) = 0 

that is, r(t) and r′(t) are orthogonal vectors for all t. 

 

 

 

 

Proof: 

It follows from (a) with r1(t) = r2(t) = r(t) that 

 

2.2.3 Definite Integrals of Vector-Valued Functions 

If r(t) is a vector-valued function that is continuous on the interval a ≤ t ≤ b, then we define 

the definite integral of r(t) over this interval as a limit of Riemann sums. Specifically, we 

define 
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The definite integral of r(t) over the interval a ≤ t ≤ b can be expressed as a vector whose 

components are the definite integrals of the component functions of r(t). For example, if r(t) 

= x(t)i + y(t)j, then 

 

In general, we have 

 

Example: Let r(t) = t
2
i + e

t
 j − (2 cos πt)k. Then 

 

2.2.4 Rules of Integration 

Theorem: 

(Rules of Integration) Let r(t ), r1(t ), and r2(t) be vector-valued functions in 2-space or 3-

space that are continuous on the interval a ≤ t ≤ b, and let k be a scalar. Then the following 

rules of integration hold: 
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2.2.5 Antiderivatives of Vector-Valued Functions 

An antiderivative for a vector-valued function r(t) is a vector-valued function R(t) such that 

R′ (t) = r(t) 

we express Equation using integral notation as 

∫ 𝐫(𝑡) 𝑑𝑡 =  𝐑(𝑡)  +  𝐂 

where C represents an arbitrary constant vector. 

Since differentiation of vector-valued functions can be performed componentwise, it follows 

that anti-differentiation can be done this way as well.  

Example: 

 

where C = C1i + C2j is an arbitrary vector constant of integration. 

 

Most of the familiar integration properties have vector counterparts. For example, vector dif-

ferentiation and integration are inverse operations in the sense that 

 

Moreover, if R(t) is an antiderivative of r(t) on an interval containing t = a and t = b, then we 

have the following vector form of the Fundamental Theorem of Calculus: 
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Example: Evaluate the definite integral           

Solution: Integrating the components yields 

 

Alternative Solution: The function R(t) = t
2
i + t

3
j is an antiderivative of the integrand since 

 R′(t) = 2t i + 3t
2
j. Thus,  

 

 

Example: Find r(t) given that r′(t) = (3, 2t) and r(1) = (2, 5). 

Solution: Integrating r′(t) to obtain r(t) yields 

 

where C is a vector constant of integration. To find the value of C we substitute t = 1 and use 

the given value of r(1) to obtain 

r(1) = (3, 1) + C = (2, 5) 

so that C = (−1, 4). Thus, 

r(t) = (3t, t
2
) + (−1, 4) = (3t − 1, t

2
 + 4) 
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2.3 CHANGE OF PARAMETER; ARC LENGTH 

2.3.1 Arc Length from the Vector Viewpoint 

The arc length L of a parametric curve 

x = x(t),     y = y(t)      (a ≤ t ≤ b) 

is given by the formula 

 

Analogously, the arc length L of a parametric curve 

x = x(t),      y = y(t),       z = z(t)        (a ≤ t ≤ b)  

in 3-space is given by the formula 

 

vector forms that we can obtain by letting 

r(t) = x(t)i + y(t)j              or              r(t) = x(t)i + y(t)j + z(t)k 

It follows that 

 

and hence 

 

Theorem: 

 If C is the graph in 2-space or 3-space of a smooth vector-valued function r(t ), then its arc 

length L from t = a to t = b is 

 
 

Example: Find the arc length of that portion of the circular helix    x = cos t, y = sin t, z = t                    

from t = 0 to t = π. 

 

Solution: Set r(t) = (cos t)i + (sin t)j + tk = (cos t, sin t, t). Then 

 
From Theorem the arc length of the helix is 
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2.3.2 Arc Length as a Parameter 

For many purposes the best parameter to use for representing a curve in 2-space or 3-space 

parametrically is the length of arc measured along the curve from some fixed reference point. 

This can be done as follows: 

Using Arc Length as a Parameter 

Step 1. Select an arbitrary point on the curve C to serve as a reference point. 

Step 2. Starting from the reference point, choose one direction along the curve to be the posi-

tive direction and the other to be the negative direction. 

Step 3. If P is a point on the curve, let s be the “signed” arc length along C from the reference 

point to P, where s is positive if P is in the positive direction from the reference point and s is 

negative if P is in the negative direction. The below figure illustrates this idea. 

 

By this procedure, a unique point P on the curve is determined when a value for s is given. 

For example, s = 2 determines the point that is 2 units along the curve in the positive direc-

tion from the reference point, and s = −3/2 determines the point that is 3/2 units along the 

curve in the negative direction from the reference point. 

Let us now treat s as a variable. As the value of s changes, the corresponding point P moves 

along C and the coordinates of P become functions of s. Thus, in 2-space the coordinates of P 

are (x(s), y(s)), and in 3-space they are (x(s), y(s), z(s)). Therefore, in 2-space or 3-space the 

curve C is given by the parametric equations 

x = x(s), y = y(s)     or        x = x(s), y = y(s), z = z(s) 
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A parametric representation of a curve with arc length as the parameter is called an arc 

length parametrization of the curve. Note that a given curve will generally have infinitely 

many different arc length parametrizations, since the reference point and orientation can be 

chosen arbitrarily. 

Example: Find the arc length parametrization of the circle x
2
 + y

2
 = a

2
 with counter-

clockwise orientation and (a, 0) as the reference point. 

Solution: The circle with counter-clockwise orientation can be represented by the parametric 

equations 

x = a cos t,     y = a sin t      (0 ≤ t ≤ 2π) 

 

in which t can be interpreted as the angle in radian measure from the positive x-axis to the 

radius from the origin to the point P(x, y) (see Figure). If we take the positive direction for 

measuring the arc length to be counter-clockwise, and we take (a, 0) to be the reference point, 

then s and t are related by 

s = at or t = s/a 

Making this change of variable and noting that s increases from 0 to 2πa as t increases from 0 

to 2π yields the following arc length parametrization of the circle: 

x = a cos(s/a), y = a sin(s/a) (0 ≤ s ≤ 2πa) 
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2.3.1 Change of Parameter 

In many situations the solution of a problem can be simplified by choosing the parameter in a 

vector-valued function or a parametric curve in the right way. The two most common param-

eters for curves in 2-space or 3-space are time and arc length.  

For example, in analyzing the motion of a particle in 2-space, it is often desirable to para-

metrize its trajectory in terms of the angle φ between the tangent vector and the positive x-

axis (see below figures). Thus, our next objective is to develop methods for changing the pa-

rameter in a vector-valued function or parametric curve. This will allow us to move freely 

between different possible parametrizations. 

 

A change of parameter in a vector-valued function r(t) is a substitution t = g(τ ) that produc-

es a new vector-valued function r(g(τ )) having the same graph as r(t ), but possibly traced 

differently as the parameter τ increases. 

 

Example: Find a change of parameter t = g(τ ) for the circle 

r(t) = cos t i + sin t j                       (0 ≤ t ≤ 2π) 

such that 

(a) The circle is traced counter-clockwise as τ increases over the interval [0, 1]; 

(b) The circle is traced clockwise as τ increases over the interval [0, 1]. 

Solution (a): The given circle is traced counter-clockwise as t 

increases. Thus, if we choose g to be an increasing function, then 

it will follow from the relationship t = g(τ ) that t increases when τ 

increases, thereby ensuring that the circle will be traced counter-

clockwise as τ increases. We also want to choose g so that t in-

creases from 0 to 2π as τ increases from 0 to 1. A simple choice of 

g that satisfies all of the required criteria is the linear function 

graphed in Figure a. The equation of this line is 
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t = g(τ) = 2πτ  

which is the desired change of parameter. The resulting representation of the circle in terms 

of the parameter τ is 

r(g(τ )) = cos 2πτ i + sin 2πτ j      (0 ≤ τ ≤ 1) 

Solution (b): To ensure that the circle is traced clockwise, we will choose g to be a decreas-

ing function such that t decreases from 2π to 0 as τ increases from 0 to 1. A simple choice of 

g that achieves this is the linear function 

t = g(τ) = 2π(1 − τ)  

graphed in Figure b. The resulting representation of the circle in terms of the parameter τ is 

r(g(τ )) = cos(2π(1 − τ))i + sin(2π(1 − τ))j (0 ≤ τ ≤ 1) 

which simplifies to (verify) 

r(g(τ )) = cos 2πτi − sin 2πτ j (0 ≤ τ ≤ 1) 

 

Theorem (Chain Rule) Let r(t) be a vector-valued function in 2-space or 3- space that is dif-

ferentiable with respect to t. If t = g(τ) is a change of parameter in which g is differentiable 

with respect to τ, then r(g(τ )) is differentiable with respect to τ and 

𝑑𝑟

𝑑𝜏
=

𝑑𝑟

𝑑𝑡

𝑑𝑡

𝑑𝜏
 

-A change of parameter t = g(τ) in which r(g(τ )) is smooth if r(t) is smooth is called a 

smooth change of parameter. 

-The t = g(τ) will be a smooth change of parameter if dt/dτ is continuous and dt/dτ ≠ 0 for all 

values of τ, since these conditions imply that dr/dτ is continuous and nonzero if dr/dt is con-

tinuous and nonzero.  

-Smooth changes of parameter fall into two categories—those for which dt/dτ> 0 for all τ 

(called positive changes of parameter) and those for which dt/dτ < 0 for all τ (called negative 

changes of parameter). A positive change of parameter preserves the orientation of a para-

metric curve, and a negative change of parameter reverses it. 

2.3.2 Finding Arc Length Parametrizations 

Theorem Let C be the graph of a smooth vector-valued 

function r(t) in 2-space or 3-space, and let r(t0) be any point 

on C. Then the following formula defines a positive change 
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of parameter from t to s, where s is an arc length parameter having r(t0) as its reference 

point: 

𝑠 = ∫ ‖
𝑑𝑟

𝑑𝑢
‖ 𝑑𝑢

𝑡

𝑡0

 

Example: Find the arc length parametrization of the circular helix 

r = cos t i + sin t j + tk 

that has reference point r(0) = ˂1, 0, 0˃ and the same orientation as the given helix. 

 

Solution: Replacing t by u in r for integration purposes and taking t0 = 0, we obtain 

r = cos ui + sin uj + uk 

 

Example: A bug walks along the trunk of a tree following a path modeled by the circular he-

lix in previous example. The bug starts at the reference point (1, 0, 0) and walks up the helix 

for a distance of 10 units. What are the bug’s final coordinates? 

Solution: the arc length parametrization of the helix relative to the reference point (1, 0, 0) is 

 

 

Example: Find the arc length parametrization of the line 

x = 2t + 1,      y= 3t − 2 

that has the same orientation as the given line and uses (1,−2) as the reference point. 
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Solution: The line passes through the point (1, −2) and is parallel to v = 2i + 3j. To find the 

arc length parametrization of the line, we need only rewrite the given equations using v/ǀǀvǀǀ 

rather than v to determine the direction and replace t by s. Since 

 

2.3.3 Properties of Arc Length Parametrizations 

Theorem 

(a) If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space, where t is 

a general parameter, and if s is the arc length parameter for C defined by previous formula, 

then for every value of t the tangent vector has length 

 

‖
𝑑𝑟

𝑑𝑡
‖ =

𝑑𝑠

𝑑𝑡
 

(b) If C is the graph of a smooth vector-valued function r(s) in 2-space or 3-space, where s is 

an arc length parameter, then for every value of s the tangent vector to C has length 

 

‖
𝑑𝑟

𝑑𝑠
‖ = 1 

 

(c) If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space, and if 

ǀǀdr/dtǀǀ = 1 for every value of t, then for any value of t0 in the domain of r, the parameter        

s = t − t0 is an arc length parameter that has its reference point at the point on C where t = t0. 
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2.4 UNIT TANGENT, NORMAL, AND BINORMAL VECTORS 

2.4.1 Unit Tangent Vectors 

If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space, then the vector 

𝐫́(𝑡) is nonzero, tangent to C, and points in the direction of increasing parameter. Thus, by 

normalizing 𝐫́(𝑡) we obtain a unit vector 

𝐓(𝑡) =
𝐫́(𝑡)

‖𝐫́(𝑡)‖
     (1) 

that is tangent to C and points in the direction of increasing parameter. We call T(t) the unit 

tangent vector to C at t. 

 

Example: Find the unit tangent vector to the graph of r(t) = t
2 

i + t
3
 j at the point where t = 2. 

 

Solution: Since 

 

 

 


