2.2.1 Tangent Lines to Graphs of Vector-Valued Functions

Definition Let P be a point on the graph of a vector-valued function $\mathbf{r}(t)$, and let $\mathbf{r}\left(t_{0}\right)$ be the radius vector from the origin to P (see below figure). If $\mathbf{r}^{\prime}\left(t_{0}\right)$ exists and $\mathbf{r}^{\prime}\left(t_{0}\right) \neq \mathbf{0}$, then we call $\mathbf{r}^{\prime}\left(t_{0}\right)$ a tangent vector to the graph of $\mathbf{r}(t)$ at $\mathbf{r}\left(t_{0}\right)$, and we call the line through P that is parallel to the tangent vector the tangent line to the graph of $\mathbf{r}(t)$ at $\mathbf{r}\left(t_{0}\right)$.

Let $\mathbf{r}_{0}=\mathbf{r}\left(t_{0}\right)$ and $\mathbf{v}_{0}=\mathbf{r}^{\prime}\left(t_{0}\right)$. The tangent line to the graph of $\mathbf{r}(t)$ at \mathbf{r}_{0} is given by the vector equation

$$
\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}_{0}
$$

Example: Find parametric equations of the tangent line to the circular helix

$$
x=\cos t, y=\sin t, z=t
$$

where $t=t_{0}$, and use that result to find parametric equations for the tangent line at the point where $t=\pi$.

Solution: The vector equation of the helix is

$$
\begin{gathered}
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k} \\
\mathbf{r}_{0}=\mathbf{r}\left(t_{0}\right)=\cos t_{0} \mathbf{i}+\sin t_{0} \mathbf{j}+t_{0} \mathbf{k} \\
\mathbf{v}_{0}=\mathbf{r}^{\prime}\left(t_{0}\right)=\left(-\sin t_{0}\right) \mathbf{i}+\cos t_{0} \mathbf{j}+\mathbf{k}
\end{gathered}
$$

The vector equation of the tangent line at $t=t_{0}$ is

$$
\begin{aligned}
\mathbf{r} & =\cos t_{0} \mathbf{i}+\sin t_{0} \mathbf{j}+t_{0} \mathbf{k}+t\left[\left(-\sin t_{0}\right) \mathbf{i}+\cos t_{0} \mathbf{j}+\mathbf{k}\right] \\
& =\left(\cos t_{0}-t \sin t_{0}\right) \mathbf{i}+\left(\sin t_{0}+t \cos t_{0}\right) \mathbf{j}+\left(t_{0}+t\right) \mathbf{k}
\end{aligned}
$$

Thus, the parametric equations of the tangent line at $t=t_{0}$ are

$$
x=\cos t_{0}-t \sin t_{0}, y=\sin t_{0}+t \cos t_{0}, z=t_{0}+t
$$

In particular, the tangent line at $t=\pi$ has parametric equations

$$
x=-1, y=-t, z=\pi+t
$$

The graph of the helix and this tangent line are shown in figure.

Example: Let

$$
\mathbf{r}_{1}(t)=\left(\tan ^{-1} t\right) \mathbf{i}+(\sin t) \mathbf{j}+t^{2} \mathbf{k}
$$

and

$$
\mathbf{r}_{2}(t)=\left(t^{2}-t\right) \mathbf{i}+(2 t-2) \mathbf{j}+(\ln t) \mathbf{k}
$$

The graphs of $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ intersect at the origin. Find the degree measure of the acute angle between the tangent lines to the graphs of $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ at the origin.

Solution: The graph of $\mathbf{r}_{1}(t)$ passes through the origin at $t=0$, where its tangent vector is

$$
\dot{r}_{1}(0)=\left.\left\langle\frac{1}{1+t^{2}}, \cos t, 2 t\right\rangle\right|_{t=0}=\langle 1,1,0\rangle
$$

The graph of $\mathbf{r}_{2}(t)$ passes through the origin at $t=1$ (verify), where its tangent vector is

$$
\dot{r}_{2}(1)=\left.\left\langle 2 t-1,2, \frac{1}{t}\right\rangle\right|_{t=1}=\langle 1,2,1\rangle
$$

the angle θ between these two tangent vectors satisfies

$$
\cos \theta=\frac{\langle 1,1,0\rangle \cdot\langle 1,2,1\rangle}{\|\langle 1,1,0\rangle\|\|\langle 1,2,1\rangle\|}=\frac{1+2+0}{\sqrt{2} \sqrt{6}}=\frac{3}{\sqrt{12}}=\frac{\sqrt{3}}{2}
$$

It follows that $\theta=\pi / 6$ radians, or 30°.

2.2.2 Derivatives of Dot and Cross Products

The following rules, which are derived in the exercises, provide a method for differentiating dot products in 2-space and 3-space and cross products in 3-space.

$$
\begin{align*}
\frac{d}{d t}\left[\mathbf{r}_{1}(t) \cdot \mathbf{r}_{2}(t)\right] & =\mathbf{r}_{1}(t) \cdot \frac{d \mathbf{r}_{2}}{d t}+\frac{d \mathbf{r}_{1}}{d t} \cdot \mathbf{r}_{2}(t) \tag{a}\\
\frac{d}{d t}\left[\mathbf{r}_{1}(t) \times \mathbf{r}_{2}(t)\right] & =\mathbf{r}_{1}(t) \times \frac{d \mathbf{r}_{2}}{d t}+\frac{d \mathbf{r}_{1}}{d t} \times \mathbf{r}_{2}(t) \tag{b}
\end{align*}
$$

Theorem
If $\mathbf{r}(t)$ is a differentiable vector-valued function in 2-space or 3-space and $\|\mathbf{r}(t)\|$ is constant for all t, then

$$
\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0
$$

that is, $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ are orthogonal vectors for all t.

Proof:

It follows from (a) with $\mathbf{r}_{1}(t)=\mathbf{r}_{2}(t)=\mathbf{r}(t)$ that

$$
\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{r}(t)]=\mathbf{r}(t) \cdot \frac{d \mathbf{r}}{d t}+\frac{d \mathbf{r}}{d t} \cdot \mathbf{r}(t)
$$

or, equivalently,

$$
\frac{d}{d t}\left[\|\mathbf{r}(t)\|^{2}\right]=2 \mathbf{r}(t) \cdot \frac{d \mathbf{r}}{d t}
$$

But $\|\mathbf{r}(t)\|^{2}$ is constant, so its derivative is zero. Thus

$$
2 \mathbf{r}(t) \cdot \frac{d \mathbf{r}}{d t}=0
$$

2.2.3 Definite Integrals of Vector-Valued Functions

If $\mathbf{r}(t)$ is a vector-valued function that is continuous on the interval $a \leq t \leq b$, then we define the definite integral of $\mathbf{r}(t)$ over this interval as a limit of Riemann sums. Specifically, we define

$$
\int_{a}^{b} \mathbf{r}(t) d t=\lim _{\max \Delta t_{k} \rightarrow 0} \sum_{k=1}^{n} \mathbf{r}\left(t_{k}^{*}\right) \Delta t_{k}
$$

The definite integral of $\mathbf{r}(t)$ over the interval $a \leq t \leq b$ can be expressed as a vector whose components are the definite integrals of the component functions of $\mathbf{r}(t)$. For example, if $\mathbf{r}(t)$ $=x(t) \mathbf{i}+y(t) \mathbf{j}$, then

$$
\begin{aligned}
\int_{a}^{b} \mathbf{r}(t) d t & =\lim _{\max \Delta t_{k} \rightarrow 0} \sum_{k=1}^{n} \mathbf{r}\left(t_{k}^{*}\right) \Delta t_{k} \\
& =\lim _{\max \Delta t_{k} \rightarrow 0}\left[\left(\sum_{k=1}^{n} x\left(t_{k}^{*}\right) \Delta t_{k}\right) \mathbf{i}+\left(\sum_{k=1}^{n} y\left(t_{k}^{*}\right) \Delta t_{k}\right) \mathbf{j}\right] \\
& =\left(\lim _{\max \Delta t_{k} \rightarrow 0} \sum_{k=1}^{n} x\left(t_{k}^{*}\right) \Delta t_{k}\right) \mathbf{i}+\left(\lim _{\max \Delta t_{k} \rightarrow 0} \sum_{k=1}^{n} y\left(t_{k}^{*}\right) \Delta t_{k}\right) \mathbf{j} \\
& =\left(\int_{a}^{b} x(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} y(t) d t\right) \mathbf{j}
\end{aligned}
$$

In general, we have

$$
\begin{gathered}
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} x(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} y(t) d t\right) \mathbf{j} \\
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} x(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} y(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} z(t) d t\right) \mathbf{k}
\end{gathered}
$$

Example: Let $\mathbf{r}(t)=t^{2} \mathbf{i}+e^{t} \mathbf{j}-(2 \cos \pi t) \mathbf{k}$. Then

$$
\begin{aligned}
\int_{0}^{1} \mathbf{r}(t) d t & =\left(\int_{0}^{1} t^{2} d t\right) \mathbf{i}+\left(\int_{0}^{1} e^{t} d t\right) \mathbf{j}-\left(\int_{0}^{1} 2 \cos \pi t d t\right) \mathbf{k} \\
& \left.\left.\left.=\frac{t^{3}}{3}\right]_{0}^{1} \mathbf{i}+e^{t}\right]_{0}^{1} \mathbf{j}-\frac{2}{\pi} \sin \pi t\right]_{0}^{1} \mathbf{k}=\frac{1}{3} \mathbf{i}+(e-1) \mathbf{j}
\end{aligned}
$$

2.2.4 Rules of Integration

Theorem:

(Rules of Integration) Let $\mathbf{r}(t), \mathbf{r}_{1}(t)$, and $\mathbf{r}_{2}(t)$ be vector-valued functions in 2-space or 3space that are continuous on the interval $a \leq t \leq b$, and let k be a scalar. Then the following rules of integration hold:
(a) $\int_{a}^{b} k \mathbf{r}(t) d t=k \int_{a}^{b} \mathbf{r}(t) d t$
(b) $\int_{a}^{b}\left[\mathbf{r}_{1}(t)+\mathbf{r}_{2}(t)\right] d t=\int_{a}^{b} \mathbf{r}_{1}(t) d t+\int_{a}^{b} \mathbf{r}_{2}(t) d t$
(c) $\int_{a}^{b}\left[\mathbf{r}_{1}(t)-\mathbf{r}_{2}(t)\right] d t=\int_{a}^{b} \mathbf{r}_{1}(t) d t-\int_{a}^{b} \mathbf{r}_{2}(t) d t$

2.2.5 Antiderivatives of Vector-Valued Functions

An antiderivative for a vector-valued function $\mathbf{r}(t)$ is a vector-valued function $\mathbf{R}(t)$ such that

$$
\mathbf{R}^{\prime}(t)=\mathbf{r}(t)
$$

we express Equation using integral notation as

$$
\int \mathbf{r}(t) d t=\mathbf{R}(t)+\mathbf{C}
$$

where \mathbf{C} represents an arbitrary constant vector.
Since differentiation of vector-valued functions can be performed componentwise, it follows that anti-differentiation can be done this way as well.

Example:

$$
\begin{aligned}
\int\left(2 t \mathbf{i}+3 t^{2} \mathbf{j}\right) d t & =\left(\int 2 t d t\right) \mathbf{i}+\left(\int 3 t^{2} d t\right) \mathbf{j} \\
& =\left(t^{2}+C_{1}\right) \mathbf{i}+\left(t^{3}+C_{2}\right) \mathbf{j} \\
& =\left(t^{2} \mathbf{i}+t^{3} \mathbf{j}\right)+\left(C_{1} \mathbf{i}+C_{2} \mathbf{j}\right)=\left(t^{2} \mathbf{i}+t^{3} \mathbf{j}\right)+\mathbf{C}
\end{aligned}
$$

where $\mathbf{C}=C_{1} \mathbf{i}+C_{2} \mathbf{j}$ is an arbitrary vector constant of integration.

Most of the familiar integration properties have vector counterparts. For example, vector differentiation and integration are inverse operations in the sense that

$$
\frac{d}{d t}\left[\int \mathbf{r}(t) d t\right]=\mathbf{r}(t) \quad \text { and } \quad \int \mathbf{r}^{\prime}(t) d t=\mathbf{r}(t)+\mathbf{C}
$$

Moreover, if $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$ on an interval containing $t=a$ and $t=b$, then we have the following vector form of the Fundamental Theorem of Calculus:

$$
\left.\int_{a}^{b} \mathbf{r}(t) d t=\mathbf{R}(t)\right]_{a}^{b}=\mathbf{R}(b)-\mathbf{R}(a)
$$

Example: Evaluate the definite integral

$$
\int_{0}^{2}\left(2 t \mathbf{i}+3 t^{2} \mathbf{j}\right) d t
$$

Solution: Integrating the components yields

$$
\left.\left.\int_{0}^{2}\left(2 t \mathbf{i}+3 t^{2} \mathbf{j}\right) d t=t^{2}\right]_{0}^{2} \mathbf{i}+t^{3}\right]_{0}^{2} \mathbf{j}=4 \mathbf{i}+8 \mathbf{j}
$$

Alternative Solution: The function $\mathbf{R}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$ is an antiderivative of the integrand since $\mathbf{R}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}$. Thus,

$$
\left.\left.\int_{0}^{2}\left(2 t \mathbf{i}+3 t^{2} \mathbf{j}\right) d t=\mathbf{R}(t)\right]_{0}^{2}=t^{2} \mathbf{i}+t^{3} \mathbf{j}\right]_{0}^{2}=(4 \mathbf{i}+8 \mathbf{j})-(0 \mathbf{i}+0 \mathbf{j})=4 \mathbf{i}+8 \mathbf{j}
$$

Example: Find $\mathbf{r}(t)$ given that $\mathbf{r}^{\prime}(t)=(3,2 t)$ and $\mathbf{r}(1)=(2,5)$.
Solution: Integrating $\mathbf{r}^{\prime}(t)$ to obtain $\mathbf{r}(t)$ yields

$$
\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t) d t=\int\langle 3,2 t\rangle d t=\left\langle 3 t, t^{2}\right\rangle+\mathbf{C}
$$

where \mathbf{C} is a vector constant of integration. To find the value of \mathbf{C} we substitute $t=1$ and use the given value of $\mathbf{r}(1)$ to obtain

$$
\mathbf{r}(1)=(3,1)+\mathbf{C}=(2,5)
$$

so that $\mathbf{C}=(-1,4)$. Thus,

$$
\mathbf{r}(t)=\left(3 t, t^{2}\right)+(-1,4)=\left(3 t-1, t^{2}+4\right)
$$

2.3 CHANGE OF PARAMETER; ARC LENGTH

2.3.1 Arc Length from the Vector Viewpoint

The arc length L of a parametric curve

$$
x=x(t), \quad y=y(t) \quad(a \leq t \leq b)
$$

is given by the formula

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Analogously, the arc length L of a parametric curve

$$
x=x(t), \quad y=y(t), \quad z=z(t) \quad(a \leq t \leq b)
$$

in 3 -space is given by the formula

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

vector forms that we can obtain by letting

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j} \quad \text { or } \quad \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

It follows that

$$
\frac{d \mathbf{r}}{d t}=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j} \quad \text { or } \quad \frac{d \mathbf{r}}{d t}=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}
$$

and hence

$$
\left\|\frac{d \mathbf{r}}{d t}\right\|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \quad \text { or }\left\|\frac{d \mathbf{r}}{d t}\right\|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}
$$

Theorem:

If C is the graph in 2-space or 3-space of a smooth vector-valued function $\mathbf{r}(t)$, then its arc length L from $t=a$ to $t=b$ is

$$
L=\int_{a}^{b}\left\|\frac{d \mathbf{r}}{d t}\right\| d t
$$

Example: Find the arc length of that portion of the circular helix $\quad x=\cos t, y=\sin t, z=t$ from $t=0$ to $t=\pi$.

Solution: Set $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}+t \mathbf{k}=(\cos t, \sin t, t)$. Then

$$
\mathbf{r}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle \quad \text { and } \quad\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+1}=\sqrt{2}
$$

From Theorem the arc length of the helix is

$$
L=\int_{0}^{\pi}\left\|\frac{d \mathbf{r}}{d t}\right\| d t=\int_{0}^{\pi} \sqrt{2} d t=\sqrt{2} \pi
$$

2.3.2 Arc Length as a Parameter

For many purposes the best parameter to use for representing a curve in 2 -space or 3 -space parametrically is the length of arc measured along the curve from some fixed reference point. This can be done as follows:

Using Arc Length as a Parameter

Step 1. Select an arbitrary point on the curve C to serve as a reference point.
Step 2. Starting from the reference point, choose one direction along the curve to be the positive direction and the other to be the negative direction.

Step 3. If P is a point on the curve, let s be the "signed" arc length along C from the reference point to P, where s is positive if P is in the positive direction from the reference point and s is negative if P is in the negative direction. The below figure illustrates this idea.

By this procedure, a unique point P on the curve is determined when a value for s is given. For example, $s=2$ determines the point that is 2 units along the curve in the positive direction from the reference point, and $s=-3 / 2$ determines the point that is $3 / 2$ units along the curve in the negative direction from the reference point.
Let us now treat s as a variable. As the value of s changes, the corresponding point P moves along C and the coordinates of P become functions of s. Thus, in 2-space the coordinates of P are $(x(s), y(s))$, and in 3 -space they are $(x(s), y(s), z(s))$. Therefore, in 2 -space or 3 -space the curve C is given by the parametric equations

$$
x=x(s), y=y(s) \quad \text { or } \quad x=x(s), y=y(s), z=z(s)
$$

A parametric representation of a curve with arc length as the parameter is called an arc length parametrization of the curve. Note that a given curve will generally have infinitely many different arc length parametrizations, since the reference point and orientation can be chosen arbitrarily.
Example: Find the arc length parametrization of the circle $x^{2}+y^{2}=a^{2}$ with counterclockwise orientation and $(a, 0)$ as the reference point.
Solution: The circle with counter-clockwise orientation can be represented by the parametric equations

$$
x=a \cos t, \quad y=a \sin t \quad(0 \leq t \leq 2 \pi)
$$

in which t can be interpreted as the angle in radian measure from the positive x-axis to the radius from the origin to the point $P(x, y)$ (see Figure). If we take the positive direction for measuring the arc length to be counter-clockwise, and we take $(a, 0)$ to be the reference point, then s and t are related by

$$
s=a t \text { or } t=s / a
$$

Making this change of variable and noting that s increases from 0 to $2 \pi a$ as t increases from 0 to 2π yields the following arc length parametrization of the circle:

$$
x=a \cos (s / a), y=a \sin (s / a)(0 \leq s \leq 2 \pi a)
$$

2.3.1 Change of Parameter

In many situations the solution of a problem can be simplified by choosing the parameter in a vector-valued function or a parametric curve in the right way. The two most common parameters for curves in 2-space or 3-space are time and arc length.
For example, in analyzing the motion of a particle in 2-space, it is often desirable to parametrize its trajectory in terms of the angle φ between the tangent vector and the positive x axis (see below figures). Thus, our next objective is to develop methods for changing the parameter in a vector-valued function or parametric curve. This will allow us to move freely between different possible parametrizations.

Time as parameter

Arc length as parameter

ϕ as parameter

A change of parameter in a vector-valued function $\mathbf{r}(t)$ is a substitution $t=g(\tau)$ that produces a new vector-valued function $\mathbf{r}(g(\tau))$ having the same graph as $\mathbf{r}(t)$, but possibly traced differently as the parameter τ increases.

Example: Find a change of parameter $t=g(\tau)$ for the circle

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j} \quad(0 \leq t \leq 2 \pi)
$$

such that
(a) The circle is traced counter-clockwise as τ increases over the interval $[0,1]$;
(b) The circle is traced clockwise as τ increases over the interval $[0,1]$.

Solution (a): The given circle is traced counter-clockwise as t increases. Thus, if we choose g to be an increasing function, then it will follow from the relationship $t=g(\tau)$ that t increases when τ increases, thereby ensuring that the circle will be traced counterclockwise as τ increases. We also want to choose g so that t increases from 0 to 2π as τ increases from 0 to 1 . A simple choice of g that satisfies all of the required criteria is the linear function graphed in Figure a. The equation of this line is

(a)

(b)

$$
t=g(\tau)=2 \pi \tau
$$

which is the desired change of parameter. The resulting representation of the circle in terms of the parameter τ is

$$
\mathbf{r}(g(\tau))=\cos 2 \pi \tau \mathbf{i}+\sin 2 \pi \tau \mathbf{j} \quad(0 \leq \tau \leq 1)
$$

Solution (b): To ensure that the circle is traced clockwise, we will choose g to be a decreasing function such that t decreases from 2π to 0 as τ increases from 0 to 1 . A simple choice of g that achieves this is the linear function

$$
t=g(\tau)=2 \pi(1-\tau)
$$

graphed in Figure b. The resulting representation of the circle in terms of the parameter τ is

$$
\mathbf{r}(g(\tau))=\cos (2 \pi(1-\tau)) \mathbf{i}+\sin (2 \pi(1-\tau)) \mathbf{j}(0 \leq \tau \leq 1)
$$

which simplifies to (verify)

$$
\mathbf{r}(g(\tau))=\cos 2 \pi \tau \mathbf{i}-\sin 2 \pi \tau \mathbf{j}(0 \leq \tau \leq 1)
$$

Theorem (Chain Rule) Let $\mathbf{r}(t)$ be a vector-valued function in 2-space or 3- space that is differentiable with respect to t. If $t=g(\tau)$ is a change of parameter in which g is differentiable with respect to τ, then $\mathbf{r}(g(\tau))$ is differentiable with respect to τ and

$$
\frac{d r}{d \tau}=\frac{d r}{d t} \frac{d t}{d \tau}
$$

-A change of parameter $t=g(\tau)$ in which $\mathbf{r}(g(\tau))$ is smooth if $\mathbf{r}(t)$ is smooth is called a smooth change of parameter.
-The $t=g(\tau)$ will be a smooth change of parameter if $d t / d \tau$ is continuous and $d t / d \tau \neq 0$ for all values of τ, since these conditions imply that $d \mathbf{r} / d \tau$ is continuous and nonzero if $d \mathbf{r} / d t$ is continuous and nonzero.
-Smooth changes of parameter fall into two categories-those for which $d t / d \tau>0$ for all τ (called positive changes of parameter) and those for which $d t / d \tau<0$ for all τ (called negative changes of parameter). A positive change of parameter preserves the orientation of a parametric curve, and a negative change of parameter reverses it.

2.3.2 Finding Arc Length Parametrizations

Theorem Let C be the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-space or 3-space, and let $\mathbf{r}\left(t_{0}\right)$ be any point on C. Then the following formula defines a positive change

of parameter from to s, where s is an arc length parameter having $\mathbf{r}\left(t_{0}\right)$ as its reference point:

$$
s=\int_{t_{0}}^{t}\left\|\frac{d r}{d u}\right\| d u
$$

Example: Find the arc length parametrization of the circular helix

$$
\mathbf{r}=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}
$$

that has reference point $\mathbf{r}(0)=<1,0,0\rangle$ and the same orientation as the given helix.

Solution: Replacing t by u in \mathbf{r} for integration purposes and taking $t_{0}=0$, we obtain

$$
\begin{aligned}
& \mathbf{r}=\cos u \mathbf{i}+\sin u \mathbf{j}+u \mathbf{k} \\
& \frac{d \mathbf{r}}{d u}=(-\sin u) \mathbf{i}+\cos u \mathbf{j}+\mathbf{k} \\
& \left\|\frac{d \mathbf{r}}{d u}\right\|=\sqrt{(-\sin u)^{2}+\cos ^{2} u+1}=\sqrt{2} \\
& \left.s=\int_{0}^{t}\left\|\frac{d \mathbf{r}}{d u}\right\| d u=\int_{0}^{t} \sqrt{2} d u=\sqrt{2} u\right]_{0}^{t}=\sqrt{2} t
\end{aligned}
$$

Thus, $t=s / \sqrt{2}$, so (13) can be reparametrized in terms of s as

$$
\mathbf{r}=\cos \left(\frac{s}{\sqrt{2}}\right) \mathbf{i}+\sin \left(\frac{s}{\sqrt{2}}\right) \mathbf{j}+\frac{s}{\sqrt{2}} \mathbf{k}
$$

Example: A bug walks along the trunk of a tree following a path modeled by the circular helix in previous example. The bug starts at the reference point $(1,0,0)$ and walks up the helix for a distance of 10 units. What are the bug's final coordinates?
Solution: the arc length parametrization of the helix relative to the reference point $(1,0,0)$ is

$$
\mathbf{r}=\cos \left(\frac{s}{\sqrt{2}}\right) \mathbf{i}+\sin \left(\frac{s}{\sqrt{2}}\right) \mathbf{j}+\frac{s}{\sqrt{2}} \mathbf{k}
$$

or, expressed parametrically,

$$
x=\cos \left(\frac{s}{\sqrt{2}}\right), \quad y=\sin \left(\frac{s}{\sqrt{2}}\right), \quad z=\frac{s}{\sqrt{2}}
$$

Thus, at $s=10$ the coordinates are

$$
\left(\cos \left(\frac{10}{\sqrt{2}}\right), \sin \left(\frac{10}{\sqrt{2}}\right), \frac{10}{\sqrt{2}}\right) \approx(0.705,0.709,7.07)
$$

Example: Find the arc length parametrization of the line

$$
x=2 t+1, \quad y=3 t-2
$$

that has the same orientation as the given line and uses $(1,-2)$ as the reference point.

Solution: The line passes through the point $(1,-2)$ and is parallel to $\mathbf{v}=2 \mathbf{i}+3 \mathbf{j}$. To find the arc length parametrization of the line, we need only rewrite the given equations using $\mathbf{v} / \mid \mathbf{v} \|$ rather than \mathbf{v} to determine the direction and replace t by s. Since

$$
\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{2 \mathbf{i}+3 \mathbf{j}}{\sqrt{13}}=\frac{2}{\sqrt{13}} \mathrm{i}+\frac{3}{\sqrt{13}} \mathrm{j}
$$

it follows that the parametric equations for the line in terms of s are

$$
x=\frac{2}{\sqrt{13}} s+1, \quad y=\frac{3}{\sqrt{13}} s-2
$$

2.3.3 Properties of Arc Length Parametrizations

Theorem

(a) If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-space or 3-space, where t is a general parameter, and if s is the arc length parameter for C defined by previous formula, then for every value of the tangent vector has length

$$
\left\|\frac{d r}{d t}\right\|=\frac{d s}{d t}
$$

(b) If C is the graph of a smooth vector-valued function $\mathbf{r}($ s) in 2-space or 3-space, where s is an arc length parameter, then for every value of s the tangent vector to C has length

$$
\left\|\frac{d r}{d s}\right\|=1
$$

(c) If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-space or 3-space, and if $\|d \mathbf{r} / d t\|=1$ for every value of t, then for any value of t_{0} in the domain of \mathbf{r}, the parameter $s=t-t_{0}$ is an arc length parameter that has its reference point at the point on C where $t=t_{0}$.

$$
\begin{aligned}
& \frac{d s}{d t}=\left\|\frac{d \mathrm{r}}{d t}\right\|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \\
& \frac{d s}{d t}=\left\|\frac{d \mathbf{r}}{d t}\right\|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} \\
& \left\|\frac{d \mathrm{r}}{d s}\right\|=\sqrt{\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}}=1 \\
& \left\|\frac{d \mathbf{r}}{d s}\right\|=\sqrt{\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}+\left(\frac{d z}{d s}\right)^{2}}=1
\end{aligned}
$$

2.4 UNIT TANGENT, NORMAL, AND BINORMAL VECTORS

2.4.1 Unit Tangent Vectors

If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$ in 2-space or 3-space, then the vector $\dot{\mathbf{r}}(t)$ is nonzero, tangent to C, and points in the direction of increasing parameter. Thus, by normalizing $\dot{\mathbf{r}}(t)$ we obtain a unit vector

$$
\begin{equation*}
\mathbf{T}(t)=\frac{\dot{\mathbf{r}}(t)}{\|\dot{\mathbf{r}}(t)\|} \tag{1}
\end{equation*}
$$

that is tangent to C and points in the direction of increasing parameter. We call $\mathbf{T}(t)$ the unit tangent vector to C at t.

Example: Find the unit tangent vector to the graph of $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$ at the point where $t=2$.

Solution: Since

$$
\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}
$$

we obtain

$$
\mathbf{T}(2)=\frac{\mathbf{r}^{\prime}(2)}{\left\|\mathbf{r}^{\prime}(2)\right\|}=\frac{4 i+12 j}{\sqrt{160}}=\frac{4 i+12 j}{4 \sqrt{10}}=\frac{1}{\sqrt{10}} i+\frac{3}{\sqrt{10}} \mathbf{j}
$$

