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3.3 PARTIAL DERIVATIVES 

3.3.1 Partial Derivatives of Functions of Two Variables 

Definition 

 If z = f(x, y) and (x0, y0) is a point in the domain of f, then the partial derivative of f with re-

spect to x at (x0, y0) [also called the partial derivative of z with respect to x at (x0, y0)] is the 

derivative at x0 of the function that results when y = y0 is held fixed and x is allowed to vary. 

This partial derivative is denoted by fx(x0, y0) and is given by 

  (1) 

Similarly, the partial derivative of f with respect to y at (x0, y0) [also called the partial deriva-

tive of z with respect to y at (x0, y0)] is the derivative at y0 of the function that results when x 

= x0 is held fixed and y is allowed to vary. This partial derivative is denoted by      fy(x0, y0) 

and is given by 

            (2) 

Example 3.13 Find fx(1, 3) and fy(1, 3) for the function f(x, y) = 2x
3
y

2
 + 2y + 4x. 

Solution: Since 

 

3.3.2 The Partial Derivative Functions 

Formulas (1) and (2) define the partial derivatives of a function at a specific point (x0, y0). 

However, often it will be desirable to omit the subscripts and think of the partial derivatives 

as functions of the variables x and y. These functions are 
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Example 3.14 Find fx(x, y) and fy(x, y) for f(x, y) = 2x
3
y

2
 + 2y + 4x, and use those partial de-

rivatives to compute fx(1, 3) and fy(1, 3). 

Solution: Keeping y fixed and differentiating with respect to x yields 

 

and keeping x fixed and differentiating with respect to y yields 

 

3.3.3 Partial Derivative Notation 

If z = f(x, y), then the partial derivatives fx and fy are also denoted by the symbols 

 

Some typical notations for the partial derivatives of z = f(x, y) at a point (x0, y0) are 

 

Example 3.15 Find ∂z/∂x and ∂z/∂y if z = x
4
 sin(xy

3
). 

Solution: 

 

3.3.4 Partial Derivatives Viewed As Rates of Change and Slopes 

Recall that if y = f(x), then the value of f(x0) can be interpreted either as the rate of change of 

y with respect to x at x0 or as the slope of the tangent line to the graph of f at x0. Partial deriva-

tives have analogous interpretations. To see that this is so, suppose that C1 is the intersection 

of the surface z = f(x, y) with the plane y = y0 and that C2 is its intersection with the plane x = 

x0 (below figure). Thus, fx(x, y0) can be interpreted as the rate of change of z with respect to x 
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along the curve C1, and fy(x0, y) can be interpreted as the rate of change of z with respect to y 

along the curve C2. In particular, fx(x0, y0) is the rate of change of z with respect to x along the 

curve C1 at the point (x0, y0), and fy(x0, y0) is the rate of change of z with respect to y along 

the curve C2 at the point (x0, y0). 

 

Example 3.16 Let f(x, y) = x
2
y + 5y

3
. 

(a) Find the slope of the surface z = f(x, y) in the x-direction at the point (1, −2). 

(b) Find the slope of the surface z = f(x, y) in the y-direction at the point (1, −2). 

Solution (a): Differentiating f with respect to x with y held fixed yields  

fx(x, y) = 2xy 

Thus, the slope in the x-direction is fx(1,−2) = −4; that is, z is decreasing at the rate of 4 units 

per unit increase in x. 

Solution (b): Differentiating f with respect to y with x held fixed yields 

fy(x, y) = x
2
 + 15y

2
 

Thus, the slope in the y-direction is fy(1,−2) = 61; that is, z is increasing at the rate of 61 units 

per unit increase in y 

3.3.5 Implicit Partial Differentiation 

Example 3.17 Find the slope of the sphere x
2
 + y

2
 + z

2
 = 1 in the y-direction at the points 

(2/3, 1/3, 2/3) and (2/3, 1/3, -2/3) (see figure). 

Solution: The point (2/3, 1/3, 2/3) lies on the upper hemisphere                          

𝑧 = √1 −  𝑥2  −  𝑦2, and the point (2/3, 1/3, -2/3) lies on the low-

er hemisphere 𝑧 = −√1 − 𝑥2  − 𝑦2. We could find the slopes by 

differentiating each expression for z separately with respect to y 

and then evaluating the derivatives at x = 2/3 and y = 1/3. Howev-

er, it is more efficient to differentiate the given equation 

x
2
 + y

2
 + z

2
 = 1 
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To perform the implicit differentiation, we view z as a function of x and y and differentiate 

both sides with respect to y, taking x to be fixed. The computations are as follows: 

 

Substituting the y- and z-coordinates of the points (2/3, 1/3, 2/3) and (2/3, 1/3, -2/3) in this 

expression, we find that the slope at the point (2/3, 1/3, 2/3) is -1/2 and the slope at (2/3, 1/3, 

-2/3) is ½. 

 

3.3.6 Partial Derivatives and Continuity 

In contrast to the case of functions of a single variable, the existence of partial derivatives for 

a multivariable function does not guarantee the continuity of the function. This fact is shown 

in the following example. 

Example 3.18 Let 

 

(a) Show that fx(x, y) and fy(x, y) exist at all points (x, y). 

(b) Explain why f is not continuous at (0, 0). 

Solution (a):  

Except that here we have assigned f a value of 0 at (0, 0). Except at this point, the partial de-

rivatives of f are 

 

It is not evident from previous formula whether f has partial derivatives at (0, 0), and if so, 

what the values of those derivatives are. To answer that question we will have to use the defi-

nitions of the partial derivatives (Definition). Applying previous formulas and we obtain 
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Solution (b):  

 

does not exist. Thus, f is not continuous at (0, 0). 

3.3.7 Partial Derivatives of Functions with More Than Two Variables 

For a function f(x, y, z) of three variables, there are three partial derivatives: 

fx(x, y, z), fy(x, y, z), fz(x, y, z) 

The partial derivative fx is calculated by holding y and z constant and differentiating with re-

spect to x. For fy the variables x and z are held constant, and for fz the variables x and y are 

held constant. If a dependent variable 

w = f(x, y, z) 

is used, then the three partial derivatives of f can be denoted by 

 

Example 3.18 

 

3.3.8 Higher-Order Partial Derivatives 

Suppose that f is a function of two variables x and y. Since the partial derivatives ∂f/∂x and 

∂f/∂y are also functions of x and y, these functions may themselves have partial derivatives. 

This gives rise to four possible second-order partial derivatives of f, which are defined by 
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The last two cases are called the mixed second-order partial derivatives or the mixed second 

partials. Also, the derivatives ∂f /∂x and ∂f /∂y are often called the first-order partial deriva-

tives when it is necessary to distinguish them from higher-order partial derivatives. Similar 

conventions apply to the second-order partial derivatives of a function of three variables. 

Example 3.20 Find the second-order partial derivatives of f(x, y) = x
2
y

3
 + x

4
y. 

Solution: We have 

 

Third-order, fourth-order, and higher-order partial derivatives can be obtained by successive 

differentiation. Some possibilities are 

 

3.3.9 Equality of Mixed Partials 

Theorem Let f be a function of two variables. If fxy and fyx are continuous on some open disk, 

then fxy = fyx on that disk. 
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3.4 DIFFERENTIABILITY, DIFFERENTIALS, AND LOCAL LINEAR-

ITY 

3.4.1 Differentiability 

Recall that a function f of one variable is called differentiable at x0 if it has a derivative at x0, 

that is, if the limit 

                  (1) 

exists. As a consequence of (1) a differentiable function enjoys a number of other important 

properties: 

• The graph of y = f(x) has a non-vertical tangent line at the point (x0, f(x0)); 

• f may be closely approximated by a linear function near x0; 

• f is continuous at x0. 

Our primary objective in this section is to extend the notion of differentiability to functions of 

two or three variables in such a way that the natural analogs of these properties hold. For ex-

ample, if a function f(x, y) of two variables is differentiable at a point (x0, y0), we want it to be 

the case that 

• the surface z = f(x, y) has a non-vertical tangent plane at the point (x0, y0, f(x0, y0)) (see be-

low figure); 

• the values of f at points near (x0, y0) can be very closely approximated by the values of a lin-

ear function; 

• f is continuous at (x0, y0). 

 

Definition A function f of two variables is said to be differentiable at (x0, y0) provided fx(x0, 

y0) and fy(x0, y0) both exist and 

    (4) 
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Example 3.21 Use Definition prove that f (x, y) = x
2
 + y

2
 is differentiable at (0, 0). 

Solution: The increment is 

 

Therefore, f is differentiable at (0, 0). 

 

We now derive an important consequence of limit (4). Define a function 

(5) 

In other words, if f is differentiable at (x0, y0), then Δf may be expressed as shown in (5), 

where ϵ →0 as (Δx, Δy)→(0, 0) and where ϵ = 0 if (Δx, Δy) = (0, 0). 

For functions of three variables we have an analogous definition of differentiability in terms 

of the increment Δf = f (x0 + Δx, y0 + Δy, z0 + Δz) − f (x0, y0, z0). 

 

Definition A function f of three variables is said to be differentiable at(x0, y0, z0) provided 

fx(x0, y0, z0), fy(x0, y0, z0), and fz(x0, y0, z0) exist and 

 

3.4.2 Differentiability and Continuity 

 

Theorem If a function is differentiable at a point, then it is continuous at that point. 

Theorem If all first-order partial derivatives of f exist and are continuous at a point, then f is 

differentiable at that point. 
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3.4.3 Differentials 

As with the one-variable case, the approximations 

 

for a function of two variables and the approximation 

    (1) 

for a function of three variables have a convenient formulation in the language of differen-

tials. If z = f (x, y) is differentiable at a point (x0, y0), we let 

                       (2) 

denote a new function with dependent variable dz and independent variables dx and dy. We 

refer to this function (also denoted df ) as the total differential of z at (x0, y0) or as the total 

differential of f at (x0, y0). Similarly, for a function w = f(x, y, z) of three variables  

we have the total differential of w at (x0, y0, z0), 

            (3) 

which is also referred to as the total differential of f at (x0, y0, z0). It is common practice to 

omit the subscripts and write Equations (2) and (3) as 

 

In the two-variable case, the approximation 

 

can be written in the form 

Δf ≈ df                   (6) 

for dx = Δx and dy = Δy. Equivalently, we can write approximation (6) as 

Δz ≈ dz                  (7) 

In other words, we can estimate the change Δz in z by the value of the differential dz where 

dx is the change in x and dy is the change in y. Furthermore, it follows from (4) that if Δx and 

Δy are close to 0, then the magnitude of the error in approximation (7) will be much smaller 

than the distance √(∆𝑥)2 + (∆𝑦)2 between (x0, y0) and (x0 + Δx, y0 + Δy). 

 

(4) 

(5) 
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Example 3.22 Use (7) to approximate the change in z = xy
2
 from its value at (0.5, 1.0) to its 

value at (0.503, 1.004). Compare the magnitude of the error in this approximation with the 

distance between the points (0.5, 1.0) and (0.503, 1.004). 

Solution: For z = xy
2
 we have dz = y

2
 dx + 2xy dy. Evaluating this differential at 

(x, y) = (0.5, 1.0), dx = Δx = 0.503 − 0.5 = 0.003, and dy = Δy = 1.004 − 1.0 = 0.004 

yields 

dz = 1.0
2
(0.003) + 2(0.5)(1.0)(0.004) = 0.007 

Since z = 0.5 at (x, y) = (0.5, 1.0) and z = 0.507032048 at (x, y) = (0.503, 1.004), we have 

Δz = 0.507032048 − 0.5 = 0.007032048 

and the error in approximating Δz by dz has magnitude 

|dz − Δz| = |0.007 − 0.007032048| = 0.000032048 

Since the distance between (0.5, 1.0) and (0.503, 1.004) = (0.5 + Δx, 1.0 + Δy) is 

 

3.4.4 Local Linear Approximations 

If a function f is differentiable at a point, then it can be very closely approximated by a linear 

function near that point. For example, suppose that f (x, y) is differentiable at the point (x0, 

y0). Then approximation can be written in the form 

 

If we let x = x0 + Δx and y = x0 + Δy, this approximation becomes 

     (1) 

Since the error in this approximation is equal to the error in approximation (3), we conclude 

that for (x, y) close to (x0, y0), the error in (1) will be much smaller than the distance between 

these two points. When f (x, y) is differentiable at (x0, y0) we get 

 

and refer to L(x, y) as the local linear approximation to f at (x0, y0). 

 

Example 3.23 Let L(x, y) denote the local linear approximation to 𝑓(𝑥, 𝑦)  =  √𝑥2 + 𝑦2 at the 

point (3, 4). Compare the error in approximating 
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by L(3.04, 3.98) with the distance between the points (3, 4) and (3.04, 3.98). 

Solution: We have 

 

 

For a function f (x, y, z) that is differentiable at (x0, y0, z0), the local linear approximation is 

 

 

3.5 THE CHAIN RULE 

3.5.1 Chain Rules for Derivatives 

Theorem (Chain Rules for Derivatives) If x = x(t) and y = y(t) are differentiable at t, and if z 

= f(x, y) is differentiable at the point (x, y) = (x(t ), y(t )), then z = f(x(t ), y(t)) is differentiable 

at t and 

 

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at 

(x, y). 

If each of the functions x = x(t), y = y(t), and z = z(t) is differentiable at t, and if w = f(x, y, z) 

is differentiable at the point (x, y, z) = (x(t ), y(t ), z(t )), then the function w = f(x(t ), y(t ), 

z(t)) is differentiable at t and 



Chapter 3: Partial Derivatives 

 

121 
 

 

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at 

(x, y, z). 

Example 3.24 Suppose that 

z = x
2
y,    x = t

2
,   y= t

3
 

Use the chain rule to find dz/dt, and check the result by expressing z as a function of t and 

differentiating directly. 

Solution: By the chain rule 

 

Alternatively, we can express z directly as a function of t, 

z = x
2
y = (t

2
)
2
(t

3
) = t

7
 

and then differentiate to obtain dz/dt = 7t
6
. However, this procedure may not always be con-

venient. 

Example 3.25 Suppose that 

 

Use the chain rule to find dw/dθ when θ = π/4. 

Solution:  
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3.5.2 Chain Rules for Partial Derivatives 

Theorem (Chain Rules for Partial Derivatives) 

 If x = x(u, v) and y = y(u, v) have first-order partial derivatives at the point (u, v), and if z = 

f(x, y) is differentiable at the point (x, y) = (x(u, v), y(u, v)), then z = f(x(u, v), y(u, v)) has 

first-order partial derivatives at the point (u, v) given by 

 

If each function x = x(u, v), y = y(u, v), and z = z(u, v) has first-order partial derivatives at the 

point (u, v), and if the function w = f(x, y, z) is differentiable at the point (x, y, z) = (x(u, v), 

y(u, v), z(u, v)), then w = f(x(u, v), y(u, v), z(u, v)) has first-order partial derivatives at the 

point (u, v) given by 

 

Example 3.26 Given that  z = e
xy

, x= 2u + v, y = u/v find ∂z/∂u and ∂z/∂v using the chain rule. 

Solution: 

  

3.5.3 Implicit Differentiation 

Theorem If the equation f(x, y) = c defines y implicitly as a differentiable function of x, and if 

∂f /∂y ≠ 0, then 

   
 

Example 3.27 Given that x
3
 + y

2
x − 3 = 0 

find dy/dx using the above equation, and check the result using implicit differentiation. 
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Solution: 

 

 
 

Theorem If the equation f(x, y, z) = c defines z implicitly as a differentiable function of x and 

y, and if ∂f /∂z ≠ 0, then 

 

Example 3.28 Consider the sphere x
2
 + y

2
 + z

2
 = 1. Find ∂z/∂x and ∂z/∂y at the point (2/3, 1/3, 

2/3) 

Solution: 

 

At the point (2/3, 1/3, 2/3), evaluating these derivatives gives ∂z/∂x = −1 and ∂z/∂y = −1/2. 

  


