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3.6 DIRECTIONAL DERIVATIVES AND GRADIENTS  

3.6.1 Directional Derivatives 

Definition If f(x, y) is a function of x and y, and if u = u1 i + u2 j is a unit vector, then the di-

rectional derivative of f in the direction of u at (x0, y0) is denoted by Duf(x0, y0) and is de-

fined by 

 

provided this derivative exists. 

 

Geometrically, Duf(x0, y0) can be interpreted as the slope of the surface z = f (x, y) in the di-

rection of u at the point (x0, y0, f(x0, y0)) (Figure a). Usually the value of Duf(x0, y0) will de-

pend on both the point (x0, y0) and the direction u. Thus, at a fixed point the slope of the sur-

face may vary with the direction (Figure b). Analytically, the directional derivative represents 

the instantaneous rate of change of f (x, y) with respect to distance in the direction of u at 

the point (x0, y0). 

  

 

 

 

 

 

 

 

 

Figure a     Figure b 

Example 3.28 Let f(x, y) = xy. Find and interpret Duf(1, 2) for the unit vector 

𝐮 =
√𝟑

𝟐
𝐢 +

𝟏

𝟐
𝐣 

Solution: 
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Since 1/2+√3 ≈ 2.23, we conclude that if we move a small distance from the point (1, 2) in 

the direction of u, the function f(x, y) = xy will increase by about 2.23 times the distance 

moved. 

 

Definition  

If u = u1i + u2j + u3k is a unit vector, and if f(x, y, z) is a function of x, y, and z, then the direc-

tional derivative of f in the direction of u at (x0, y0, z0) is denoted by Duf(x0, y0, z0) and is de-

fined by 

 

provided this derivative exists. 

 

Theorem 

(a) If f(x, y) is differentiable at (x0, y0), and if u = u1i + u2j is a unit vector, then the direc-

tional derivative Duf(x0, y0) exists and is given by 

 

(b) If f(x, y, z) is differentiable at (x0, y0, z0), and if u = u1i + u2j + u3k is a unit vector, 

then the directional derivative Duf(x0, y0, z0) exists and is given by 

 

Example 3.29 Find the directional derivative of f(x, y) = e
xy

 at (−2, 0) in the direction of the 

unit vector that makes an angle of π/3 with the positive x-axis. 

Solution: The partial derivatives of f are 
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The unit vector u that makes an angle of π/3 with the positive x-axis is 

 

 

Example 3.30 Find the directional derivative of f (x, y, z) = x
2
y − yz

3
 + z at the point (1, −2, 

0) in the direction of the vector a = 2i + j − 2k. 

Solution: 

 

3.6.2 The Gradient 

Definition 

(a) If f is a function of x and y, then the gradient of f is defined by 

∇f(x, y) = fx(x, y)i + fy(x, y)j 

(c) If f is a function of x, y, and z, then the gradient of f is defined by 

∇f(x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k 

 

The symbol ∇ (read “del”) is a “nabla”  

Formulas can now be written as 

Duf(x0, y0) = ∇f(x0, y0) . u  

Duf(x0, y0, z0) = ∇f(x0, y0, z0) . u 

For example, using above formula our solution to Example 3.30 would take the form 

Duf (1, −2, 0) = ∇f(1, −2, 0) . u = (−4i + j + k) = 2/3 i + 1/3j – 2/3k 

= (−4) (2/3) + 1/3 −2/3 = −3 
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3.6.3 Properties of the Gradient 

Theorem 

 Let f be a function of either two variables or three variables, and let P denote the point    

P(x0, y0) or P(x0, y0, z0), respectively. Assume that f is differentiable at P. 

(a) If ∇f = 0 at P, then all directional derivatives of f at P are zero. 

(b) If ∇f ≠0 at P, then among all possible directional derivatives of f at P, the derivative in the 

direction of ∇f at P has the largest value. The value of this largest directional derivative is 

ǀǀ∇f ǀǀ at P. 

(c) If ∇f ≠ 0 at P, then among all possible directional derivatives of f at P, the derivative in 

the direction opposite to that of ∇f at P has the smallest value. The value of this smallest di-

rectional derivative is −ǀǀ∇f ǀǀ at P. 

 

Example 3.31 Let f(x, y) = x
2
e

y
. Find the maximum value of a directional derivative at       

(−2, 0), and find the unit vector in the direction in which the maximum value occurs. 

Solution: 
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3.7 TANGENT PLANES AND NORMAL VECTORS 

3.7.1 Tangent Planes and Normal Vectors to Level Surfaces F(x, y, z) = c 

Definition 

Assume that F(x, y, z) has continuous first-order partial derivatives and that P0(x0, y0, z0) is a 

point on the level surface S: F(x, y, z) = c. If ∇F(x0, y0, z0) ≠ 0, then n = ∇F(x0, y0, z0) is a 

normal vector to S at P0 and the tangent plane to S at P0 is the plane with equation 

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0 

  

Example 3.32 Consider the ellipsoid x
2
 + 4y

2
 + z

2
 = 18. 

(a) Find an equation of the tangent plane to the ellipsoid at the point (1, 2, 1). 

(b) Find parametric equations of the line that is normal to the ellipsoid at the point (1, 2, 1). 

(c) Find the acute angle that the tangent plane at the point (1, 2, 1) makes with the xy-plane. 

Solution: 

Solution (a): We apply Definition with F(x, y, z) = x
2
 + 4y

2
 + z

2
 and (x0, y0, z0) = (1, 2, 1). 

Since 

∇F(x, y, z) = (Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)) = (2x, 8y, 2z) 

we have 

n = ∇F(1, 2, 1) = (2, 16, 2) 

Hence, the equation of the tangent plane is 

2(x − 1) + 16(y − 2) + 2(z − 1) =0 or x + 8y + z = 18 

Solution (b): Since n = (2, 16, 2) at the point (1, 2, 1), it follows that parametric equations 

for the normal line to the ellipsoid at the point (1, 2, 1) are 

x = 1 + 2t, y = 2 + 16t, z = 1 + 2t 

Solution (c): To find the acute angle θ between the tangent plane and the xy-plane,  

n1 = n = (2, 16, 2) and n2 = (0, 0, 1). This yields 
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3.7.2 Tangent Planes to Surfaces of The Form z = f (x, y) 

Example 3.33 Find an equation for the tangent plane and parametric equations for the normal 

line to the surface z = x
2
y at the point (2, 1, 4). 

Solution: Let F(x, y, z) = z − x
2
y. Then F(x, y, z) = 0 on the surface, so we can find the find 

the gradient of F at the point (2, 1, 4): 

∇F(x, y, z) = −2xyi − x
2
j + k 

∇F(2, 1, 4) = −4i − 4j + k 

the tangent plane has equation 

−4(x − 2) − 4(y − 1) + 1(z − 4) =0 or − 4x − 4y + z = −8 

and the normal line has equations 

x = 2 − 4t, y = 1 − 4t, z = 4 + t 

Theorem  If f(x, y) is differentiable at the point (x0, y0), then the tangent plane to the surface 

z = f(x, y) at the point P0(x0, y0, f (x0, y0)) [or (x0, y0)] is the plane 

z = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) 

3.7.3 Using Gradients to Find Tangent Lines to Intersections of Surfaces 

Example 3.34 Find parametric equations of the tangent line to the curve of intersection of the 

paraboloid z = x
2
 + y

2
 and the ellipsoid 3x

2
 + 2y

2
 + z

2
 = 9 at the point (1, 1, 2) 

Solution: We begin by rewriting the equations of the surfaces as 

x
2
 + y

2
 − z = 0 and 3x

2
 + 2y

2
 + z

2
 − 9 = 0 

and we take 

F(x, y, z) = x
2
 + y

2
 − z and G(x, y, z) = 3x

2
 + 2y

2
 + z

2
 − 9 

We will need the gradients of these functions at the point (1, 1, 2). The com-

putations are 

∇F(x, y, z) = 2xi + 2y j − k, ∇G(x, y, z) = 6xi + 4y j + 2zk 

∇F(1, 1, 2) = 2i + 2j − k, ∇G(1, 1, 2) = 6i + 4j + 4k 

Thus, a tangent vector at (1, 1, 2) to the curve of intersection is 
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Since any scalar multiple of this vector will do just as well, we can multiply by 1/2 to reduce 

the size of the coefficients and use the vector of 6i − 7j − 2k to determine the direction of the 

tangent line. This vector and the point (1, 1, 2) yield the parametric equations 

x = 1 + 6t, y = 1 − 7t, z = 2 − 2t 

3.8 MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES 

3.8.1 Extrema 

Definition A function f of two variables is said to have a relative maximum at a point (x0, y0) 

if there is a disk centered at (x0, y0) such that f(x0, y0) ≥ f(x, y) for all points (x, y) that lie in-

side the disk, and f is said to have an absolute maximum at (x0, y0) if f(x0, y0) ≥ f(x, y) for all 

points (x, y) in the domain of f. 

 

Definition A function f of two variables is said to have a relative minimum at a point (x0, y0) 

if there is a disk centered at (x0, y0) such that f(x0, y0) ≤ f(x, y) for all points (x, y) that lie in-

side the disk, and f is said to have an absolute minimum at (x0, y0) if f(x0, y0) ≤ f(x, y) for all 

points (x, y) in the domain of f. 

 

If f has a relative maximum or a relative minimum at (x0, y0), then we say that f has a relative 

extremum at (x0, y0), and if f has an absolute maximum or absolute minimum at (x0, y0), then 

we say that f has an absolute extremum at (x0, y0). 
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3.8.2 Bounded Sets 

- (finite intervals and infinite intervals on the real line),  

- Distinguish between regions of “finite extent” and regions of “infinite extent” in 2-

space and 3-space.  

- A set of points in 2-space is called bounded if the entire set can be contained within 

some rectangle,  

- called unbounded if there is no rectangle that contains all the points of the set. 

- Similarly, a set of points in 3-space is bounded if the entire set can be contained with-

in some box, and is unbounded otherwise (see below Figure ). 

 

3.8.3 The Extreme-Value Theorem 

Theorem (Extreme-Value Theorem) If f(x, y) is continuous on a closed and bounded set R, 

then f has both an absolute maximum and an absolute minimum on R. 

Example 3.35 The square region R whose points satisfy the inequalities 

0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 

is a closed and bounded set in the xy-plane. The function f 

whose graph is shown in Figure is continuous on R; thus, it is 

guaranteed to have an absolute maximum and minimum on R 

by the last theorem. These occur at points D and A that are 

shown in the figure. 
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3.8.4 Finding Relative Extrema 

Theorem If f has a relative extremum at a point (x0, y0), and if the first-order partial deriva-

tives of f exist at this point, then 

fx(x0, y0) = 0 and fy(x0, y0) = 0 

 

Definition A point (x0, y0) in the domain of a function f(x, y) is called a critical point of the 

function if fx(x0, y0) = 0 and fy(x0, y0) = 0 or if one or both partial derivatives do not exist at 

(x0, y0). 

Example: consider the function 

f(x, y) = y
2
 − x

2
 

This function, whose graph is the hyperbolic paraboloid 

shown in the figure, has a critical point at (0, 0), since 

fx(x, y) = −2x and fy(x, y) = 2y 

from which it follows that 

fx(0, 0) = 0 and fy(0, 0) = 0 

 

 

The function f has neither a relative maximum nor a relative minimum at (0, 0). For obvious 

reasons, the point (0, 0) is called a saddle point of f.  

In general, we will say that a surface z = f(x, y) has a saddle point at (x0, y0) if there are two 

distinct vertical planes through this point such that the trace of the surface in one of the 

planes has a relative maximum at (x0, y0) and the trace in the other has a relative minimum at 

(x0, y0). 

 

Example The three functions graphed in the following figure all have critical points at (0, 0). 

For the paraboloids, the partial derivatives at the origin are zero. You can check this algebrai-
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cally by evaluating the partial derivatives at (0, 0), but you can see it geometrically by ob-

serving that the traces in the xz-plane and yz-plane have horizontal tangent lines at (0, 0). 

 

3.8.5 The Second Partials Test 

Theorem (The Second Partials Test) Let f be a function of two variables with continuous 

second-order partial derivatives in some disk centered at a critical point (x0, y0), and let 

D = fxx(x0, y0) fyy(x0, y0) − f
2

xy(x0, y0) 

(a) If D > 0 and fxx(x0, y0) > 0, then f has a relative minimum at (x0, y0). 

(b) If D > 0 and fxx(x0, y0) < 0, then f has a relative maximum at (x0, y0). 

(c) If D < 0, then f has a saddle point at (x0, y0). 

(d) If D = 0, then no conclusion can be drawn. 

Example 3.36 Locate all relative extrema and saddle points of 

f(x, y) = 3x
2
 − 2xy + y

2
 − 8y 

Solution: Since fx(x, y) = 6x − 2y and fy(x, y) = −2x + 2y − 8, the critical points of f satisfy 

the equations 

6x − 2y = 0 

−2x + 2y − 8 = 0 

Solving these for x and y yields x = 2, y = 6 (verify), so (2, 6) is the only critical point. 

To apply Theorem, we need the second-order partial derivatives 

fxx(x, y) = 6,    fyy(x, y) = 2,   fxy(x, y) = −2 

At the point (2, 6) we have 

D = fxx(2, 6) fyy(2, 6) − f
2

xy(2, 6) = (6)(2) − (−2)
2
 = 8 > 0 

and 

fxx(2, 6) = 6 > 0 
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so f has a relative minimum at (2, 6) by part (a) of the second partials test. The below figure 

shows a graph of f in the vicinity of the relative minimum. 

 

Example 3.37 Locate all relative extrema and saddle points of 

f(x, y) = 4xy − x
4
 − y

4
 

Solution: Since 

fx(x, y) = 4y − 4x
3
 

                             fy(x, y) = 4x − 4y
3
                           (1) 

the critical points of f have coordinates satisfying the equations 

 

4y − 4x
3
 = 0   y = x

3 

or 

                      4x − 4y
3
 = 0    x = y

3
                   (2) 

Substituting the top equation in the bottom yields x = (x
3
)
3
 or, equivalently, x

9
 − x = 0 or     

x(x
8
 − 1) = 0, which has solutions x = 0, x = 1, x = −1. Substituting these values in the top 

equation of (2), we obtain the corresponding y-values y = 0, y = 1, y = −1. Thus, the critical 

points of f are (0, 0), (1, 1), and (−1, −1). 

From (1), 

fxx(x, y) = −12x
2
,     fyy(x, y) = −12y

2
,        fxy(x, y) = 4 

which yields the following table: 
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At the points (1, 1) and (−1,−1), we have D > 0 and fxx < 0, so relative maxima occur at these 

critical points. At (0, 0) there is a saddle point since D < 0. The surface and a contour plot are 

shown in the below figure. 

  

 

 

 

 

 

 

 

 

 

 

Theorem If a function f of two variables has an absolute extremum (either an absolute max-

imum or an absolute minimum) at an interior point of its domain, then this extremum occurs 

at a critical point. 

3.8.6 Finding Absolute Extrema on Closed and Bounded Sets 

How to Find the Absolute Extrema of a Continuous Function f of Two Variables on a 

Closed and Bounded Set R 

Step 1. Find the critical points of f that lie in the interior of R. 

Step 2. Find all boundary points at which the absolute extrema can occur. 

Step 3. Evaluate f(x, y) at the points obtained in the preceding steps. The largest of these val-

ues is the absolute maximum and the smallest the absolute minimum. 

Example 3.38 Find the absolute maximum and minimum values of 

f(x, y) = 3xy − 6x − 3y + 7      (1) 

on the closed triangular region R with vertices (0, 0), (3, 0), and (0, 5). 

Solution: The region R is shown in Figure.  

Step 1: find critical points 

∂f/∂x = 3y − 6 and 

∂f/∂y = 3x − 3 

so all critical points occur where 

3y − 6 = 0 and 3x − 3 = 0 
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Solving these equations yields x = 1 and y = 2, so (1, 2) is the only critical point. As shown in 

Figure, this critical point is in the interior of R. 

Step 2: Determine the locations of the points on the boundary of R at which the absolute ex-

trema might occur. The boundary of R consists of three line segments, each of which we will 

treat separately: 

The line segment between (0, 0) and (3, 0): On this line segment we have y = 0, so (1) simpli-

fies to a function of the single variable x, 

u(x) = f(x, 0) = −6x + 7, 0 ≤ x ≤ 3 

This function has no critical points because u(x) = −6 is nonzero for all x. Thus the extreme 

values of u
′
(x) occur at the endpoints x = 0 and x = 3, which correspond to the points (0, 0) 

and (3, 0) of R. 

The line segment between (0, 0) and (0, 5): On this line segment we have x = 0, so (1) simpli-

fies to a function of the single variable y, 

v(y) = f(0, y) = −3y + 7, 0 ≤ y ≤ 5 

This function has no critical points because v
′
(y) = −3 is nonzero for all y. Thus, the extreme 

values of v(y) occur at the endpoints y = 0 and y = 5, which correspond to the points (0, 0) 

and (0, 5) of R. 

The line segment between (3, 0) and (0, 5): In the xy-plane, an equation for this line segment 

is 

 

so (1) simplifies to a function of the single variable x, 

 

Since w
′
(x) = −10x + 14, the equation w(x) = 0 yields x = 7/5 as the only critical point of w. 

Thus, the extreme values of w occur either at the critical point x = 7/5 or at the endpoints x = 

0 and x = 3. The endpoints correspond to the points (0, 5) and (3, 0) of R, and from (4) the 

critical point corresponds to (7/5, 8/3). 

Final step: the below table lists the values of f(x, y) at the interior critical point and at the 

points on the boundary where an absolute extremum can occur. From the table we conclude 

that the absolute maximum value of f is f(0, 0) = 7 and the absolute minimum value is f(3, 0) 

= −11. 
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Example 3.39 Determine the dimensions of a rectangular box, open at the top, having a vol-

ume of 32 ft
3
, and requiring the least amount of material for its construction. 

Solution: Let 

x = length of the box (in feet) 

y = width of the box (in feet) 

z = height of the box (in feet) 

S = surface area of the box (in square feet) 

We may reasonably assume that the box with least surface area requires the least amount of 

material, so our objective is to minimize the surface area 

S = xy + 2xz + 2yz       (1) 

(Figure) subject to the volume requirement 

xyz = 32          (2)  

From (2) we obtain z = 32/xy, so (1) can be rewritten as 

         (3) 

Differentiating (3) we obtain 

 

The solutions of this equation are x = 0 and x = 4. Since we require x > 0, the only solution of 

significance is x = 4. Substituting this value into (y=64/x
2
) yields y = 4. We conclude that the 

point (x, y) = (4, 4) is the only critical point of S in the first quadrant. Since S = 48 if x = y = 

4, this suggests we try to show that the minimum value of S on the open first quadrant is 48. 
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It immediately follows from Equation (3) that 48 < S at any point in the first quadrant for 

which at least one of the inequalities 

xy > 48,    64/y > 48,     64/x > 48 

is satisfied. Therefore, to prove that 48 ≤ S, we can restrict attention to the set of points in the 

first quadrant that satisfy the three inequalities 

xy ≤ 48,     64/y ≤ 48,    64/x ≤ 48 

These inequalities can be rewritten as 

xy ≤ 48,        y≥ 4/3,        x≥ 4/3 

and they define a closed and bounded region R within the first quadrant (below figure). The 

function S is continuous on R, so Theorem guarantees that S has an absolute minimum value 

somewhere on R. Since the point (4, 4) lies within R, and 48 < S on 

the boundary of R (why?), the minimum value of S on R must oc-

cur at an interior point. It then follows from Theorem that the 

mimimum value of S on R must occur at a critical point of S. 

Hence, the absolute minimum of S on R (and therefore on the entire 

open first quadrant) is S = 48 at the point (4, 4). Substituting x = 4 

and y = 4 into (6) yields z = 2, so the box using the least material 

has a height of 2 ft and a square base whose edges are 4ft long. 

 

  


