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3.9 LAGRANGE MULTIPLIERS 

3.9.1 Extremum Problems with Constraints 

Three-Variable Extremum Problem with One Constraint 

Maximize or minimize the function f(x, y, z) subject to the constraint g(x, y, z) = 0. 

Two-Variable Extremum Problem with One Constraint 

Maximize or minimize the function f(x, y) subject to the constraint g(x, y) = 0. 

Theorem (Constrained-Extremum Principle for Two Variables and One Constraint) Let f 

and g be functions of two variables with continuous first partial derivatives on some open set 

containing the constraint curve g(x, y) = 0, and assume that ∇g ≠ 0 at any point on this curve. 

If f has a constrained relative extremum, then this extremum occurs at a point (x0, y0) on the 

constraint curve at which the gradient vectors ∇f(x0, y0) and ∇g(x0, y0) are parallel; that is, 

there is some number λ such that 

∇f(x0, y0) = λ∇g(x0, y0) 

Example 3.40 At what point or points on the circle x
2
 + y

2
 = 1 does f(x, y) = xy have an abso-

lute maximum, and what is that maximum? 

Solution: The circle x
2
 + y

2
 = 1 is a closed and bounded set and f(x, y) = xy is a continuous 

function, so it follows from the Extreme-Value Theorem that f has an absolute maximum and 

an absolute minimum on the circle. To find these extrema, we will use Lagrange multipliers 

to find the constrained relative extrema, and then we will evaluate f at those relative extrema 

to find the absolute extrema. 

We want to maximize f(x, y) = xy subject to the constraint 

g(x, y) = x
2
 + y

2
 − 1 = 0                           (1) 

First we will look for constrained relative extrema. For this purpose we will need the gradi-

ents                                        ∇f = y i + x j      and      ∇g = 2x i + 2y j 

From the formula for ∇g we see that ∇g = 0 if and only if x = 0 and y = 0, so ∇g ≠ 0 at any 

point on the circle x
2
 + y

2
 = 1. Thus, at a constrained relative extremum we must have  

∇f = λ∇g  or   y i + x j = λ(2x i + 2y j) 

which is equivalent to the pair of equations 

y = 2xλ and x = 2yλ 
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It follows from these equations that if x = 0, then y = 0, and if y = 0, then x = 0. In either case 

we have x
2
 + y

2
 = 0, so the constraint equation x

2
 + y

2
 = 1 is not satisfied. Thus, we can as-

sume that x and y are nonzero, and we can rewrite the equations as 

λ = y/2x                     and                 λ = x/2y 

from which we obtain 

y/2x= x/2y 

or 

                                y
2
 = x

2
                            (2) 

Substituting this in (1) yields 

2x
2
 − 1 = 0 

from which we obtain x = ±1/√2. Each of these values, when substituted in Equation (2), pro-

duces y-values of y = ±1/√2. Thus, constrained relative extrema occur at the points (1/√2, 

1/√2 ), (1/√2,−1/√2 ), (−1/√2, 1/√2 ), and (−1/√2,−1/√2 ). The values of xy at these points are 

as follows: 

 

Thus, the function f(x, y) = xy has an absolute maximum of 1/2 occurring at the two points 

(1/√2, 1/√2 ) and (−1/√2,−1/√2 ). Although it was not asked for, we can also see that f has an 

absolute minimum of −1/2 occurring at the points (1/√2,−1/√2 ) and(−1/√2, 1/√2 ). The below 

figure shows some level curves xy = c and the constraint curve 

 

Example 3.41 Use the method of Lagrange multipliers to find the dimensions of a rectangle 

with perimeter p and maximum area. 

Solution: Let 

x = length of the rectangle,     y = width of the rectangle,      A = area of the rectangle 
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We want to maximize A = xy on the line segment 

2x + 2y = p, 0 ≤ x, y                  (1) 

that corresponds to the perimeter constraint. This segment is a closed and bounded set, and 

since f(x, y) = xy is a continuous function, it follows from the Extreme-Value Theorem that f 

has an absolute maximum on this segment. This absolute maximum must also be a con-

strained relative maximum since f is 0 at the endpoints of the segment and positive elsewhere 

on the segment. If g(x, y) = 2x + 2y, then we have 

∇f = yi + x j and ∇g = 2i + 2j 

Noting that ∇g ≠ 0, it follows from (4) that 

y i + x j = λ(2 i + 2 j) 

at a constrained relative maximum. This is equivalent to the two equations 

y = 2λ     and    x = 2λ 

Eliminating λ from these equations we obtain x = y, which shows that the rectangle is actually 

a square. Using this condition and constraint (1), we obtain x = p/4, y = p/4. 

 

3.9.2 Three Variables and One Constraint 

Theorem (Constrained-Extremum Principle for Three Variables and One Constraint) Let f 

and g be functions of three variables with continuous first partial derivatives on some open 

set containing the constraint surface g(x, y, z) = 0, and assume that ∇g ≠ 0 at any point on 

this surface. If f has a constrained relative extremum, then this extremum occurs at a point 

(x0, y0, z0) on the constraint surface at which the gradient vectors ∇f(x0, y0, z0) and ∇g(x0, y0, 

z0) are parallel; that is, there is some number λ such that 

∇f(x0, y0, z0) = λ∇g(x0, y0, z0) 

Example 3.41 Find the points on the sphere x
2
 + y

2
 + z

2
 = 36 that are closest to and farthest 

from the point (1, 2, 2). 

Solution: To avoid radicals, we will find points on the sphere that minimize and maximize 

the square of the distance to (1, 2, 2). Thus, we want to find the relative extrema of 

f(x, y, z) = (x − 1)
2
 + (y − 2)

2
 + (z − 2)

2
 

subject to the constraint 

x
2
 + y

2
 + z

2
 = 36                         (1) 

If we let g(x, y, z) = x
2
 + y

2
 + z

2
, then ∇g = 2xi + 2y j + 2zk. Thus, ∇g = 0 if and only if x = y = 

z = 0. It follows that ∇g ≠ 0 at any point of the sphere (1), and hence the constrained relative 

extrema must occur at points where 
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∇f(x, y, z) = λ∇g(x, y, z) 

That is, 

2(x − 1)i + 2(y − 2) j + 2(z − 2)k = λ(2xi + 2y j + 2zk) 

which leads to the equations 

2(x − 1) = 2xλ, 2(y − 2) = 2yλ, 2(z − 2) = 2zλ                  (2) 

We may assume that x, y, and z are nonzero since x = 0 does not satisfy the first equation, 

y = 0 does not satisfy the second, and z = 0 does not satisfy the third. Thus, we can rewrite 

(2) as  

 

The first two equations imply that 

 

from which it follows that 

y = 2x                (3) 

Similarly, the first and third equations imply that 

z = 2x                (4) 

Substituting (3) and (4) in the constraint equation (1), we obtain 

9x
2
 = 36 or x = ±2 

Substituting these values in (3) and (4) yields two points: 

(2, 4, 4) and (−2, −4,−4) 

Since f(2, 4, 4) = 9 and f(−2,−4,−4) = 81, it follows that (2, 4, 4) is the point on the sphere 

closest to (1, 2, 2), and (−2,−4,−4) is the point that is farthest (the following figure). 
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Example 3.42 Use Lagrange multipliers to determine the dimensions of a rectangular box, 

open at the top, having a volume of 32 ft
3
, and requiring the least amount of material for its 

construction. 

Solution: the problem is to minimize the surface area 

S = xy + 2xz + 2yz 

subject to the volume constraint 

xyz = 32       (1) 

If we let f(x, y, z) = xy + 2xz + 2yz and g(x, y, z) = xyz, then 

∇f = (y + 2z) i + (x + 2z) j + (2x + 2y) k and ∇g = yz i + xz j + xy k 

It follows that ∇g ≠ 0 at any point on the surface xyz = 32, since x, y, and z are all nonzero on 

this surface. Thus, at a constrained relative extremum we must have ∇f = λ∇g, that is, 

(y + 2z)i + (x + 2z)j + (2x + 2y)k = λ(yzi + xzj + xyk) 

This condition yields the three equations 

y + 2z = λyz, x + 2z = λxz, 2x + 2y = λxy 

Because x, y, and z are nonzero, these equations can be rewritten as 

 

From the first two equations, 

y = x        (2) 

and from the first and third equations, 

z = (½) x    (3) 

Substituting (2) and (3) in the volume constraint (1) yields 

(1/2) x
3
 = 32 

This equation, together with (13) and (14), yields 

x = 4, y= 4, z= 2 
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4 CHAPTER FOUR 

DOUBLE INTEGRALS 

4.1 DOUBLE INTEGRALS 

4.1.1 Volume 

Recall that the definite integral of a function of one variable 

       (1) 

The volume problem Given a function f of two variables that is continuous and nonnegative 

on a region R in the xy-plane, find the volume of the solid enclosed between the surface z = 

f(x, y) and the region R (Figure 1). 

 

Figure 1 

Definition 4.1 (Volume Under a Surface) If f is a function of two variables that is continu-

ous and nonnegative on a region R in the xy-plane, then the volume of the solid enclosed be-

tween the surface z = f(x, y) and the region R is defined by 

                        (2) 

Here, n → +∞ indicates the process of increasing the number of sub-rectangles of the rectan-

gle enclosing R in such a way that both the lengths and the widths of the sub-rectangles ap-

proach zero. 



Chapter 4: Double Integrals 

145 
 

 

Figure 2 

4.1.2 Definition of a Double Integral 

As in Definition 4.1, the notation n→+∞ encapsulate a process in which the enclosing rectan-

gle for R is repeatedly subdivided in such a way that both the lengths and the widths of the 

sub-rectangles approach zero.  

 

which is called the double integral of f(x, y) over R. 

If f is continuous and nonnegative on the region R, then the volume formula in (2) can be ex-

pressed as 

 
 

4.1.3 Evaluating Double Integrals 

The partial derivatives of a function f(x, y) are calculated by holding one of the variables 

fixed and differentiating with respect to the other variable. Let us consider the reverse of this 

process, partial integration. The symbols 

 

denote partial definite integrals; the first integral, called the partial definite integral with 

respect to x, is evaluated by holding y fixed and integrating with respect to x, and the second 

integral, called the partial definite integral with respect to y, is evaluated by holding x fixed 

and integrating with respect to y. As the following example shows, the partial definite integral 

with respect to x is a function of y, and the partial definite integral with respect to y is a func-

tion of x. 
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Example 4.1 

 
A partial definite integral with respect to x is a function of y and hence can be integrated with 

respect to y; similarly, a partial definite integral with respect to y can be integrated with re-

spect to x. This two-stage integration process is called iterated (or repeated) integration. We 

introduce the following notation: 

 

These integrals are called iterated integrals. 

Example 4.2 Evaluate  

 

Solution (a): 

 

Solution (b): 
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Consider the solid S bounded above by the surface z = 40 − 2xy and below by the rectangle R 

defined by 1 ≤ x ≤ 3 and 2 ≤ y ≤ 4. The volume of S is given by 

 

where A(x) is the area of a vertical cross section of S taken perpendicular to the x-axis (Figure 

3). For a fixed value of x, 1 ≤ x ≤ 3, z = 40 − 2xy is a function of y, so the 

 

represents the area under the graph of this function of y. Thus, 

 

is the volume of S. Similarly, by the method of slicing with cross sections of S taken perpen-

dicular to the y-axis, the volume of S is given by 

 

(Figure 4). Thus, the iterated integrals in parts (a) and (b) of Example  both measure the vol-

ume of S, which is the double integral of z = 40 − 2xy over R. That is, 

 

 

 

 

 

 

 

 

 

                          Figure 3                                                          Figure 4 

Theorem (Fubini’s Theorem) Let R be the rectangle defined by the inequalities 

a ≤ x ≤ b, c ≤ y ≤ d 

If f(x, y) is continuous on this rectangle, then 
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Example 4.3 Use a double integral to find the volume of the solid that is bounded above by 

the plane z = 4 − x − y and below by the rectangle R = [0, 1] × [0, 2] (Figure 5). 

Solution: The volume is the double integral of z = 4 − x − y over R. Using Theorem, this can 

be obtained from either of the iterated integrals 

  

    Figure 5 

4.1.4 Properties of Double Integrals 

 

 

  


