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4.2 DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS 

4.2.1 Iterated Integrals with Non-constant Limits of Integration 

 

Example 4.4 Evaluate 

 

Solution (a): 

 

Solution (b): 

 

 

4.2.2 Double Integrals over Nonrectangular Regions 

Definition 

(a) A type I region is bounded on the left and right by vertical lines x = a and x = b and is 

bounded below and above by continuous curves y = g1(x) and y = g2(x), where g1(x) ≤ g2(x) 

for a ≤ x ≤ b (Figure a). 

(b) A type II region is bounded below and above by horizontal lines y = c and y = d and is 

bounded on the left and right by continuous curves x = h1(y) and x = h2(y) satisfying h1(y) ≤ 

h2(y) for c ≤ y ≤ d (Figure b). 
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Theorem 

(a) If R is a type I region on which f(x, y) is continuous, then 

      (1) 

(b) If R is a type II region on which f(x, y) is continuous, then 

     (2) 

Example 4.5 Each of the iterated integrals in Example 4.4 is equal to a double integral over a 

region R. Identify the region R in each case. 

Solution: Using Theorem, the integral in Example 4.4(a) is the double integral of the func-

tion f(x, y) = y
2
x over the type I region R bounded on the left and right by the vertical lines x = 

0 and x = 1 and bounded below and above by the curves y = −x and y = x
2
 (Figure a). The in-

tegral in Example 4.4(b) is the double integral of the function f(x, y) = x sin y over the type II 

region R bounded below and above by the horizontal lines y = 0 and y = π/3 and bounded on 

the left and right by the curves x = 0 and x = cos y (Figure b). 

  

 

 

 

 

 

 

 

                               Figure a                                        Figure b 
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4.2.3 Setting up Limits of Integration for Evaluating Double Integrals 

Determining Limits of Integration: Type I Region 

Step 1. Since x is held fixed for the first integration, we draw a vertical line through the re-

gion R at an arbitrary fixed value x (below figure). This line crosses the boundary of R twice. 

The lower point of intersection is on the curve y = g1(x) and the higher point is on the curve y 

= g2(x). These two intersections determine the lower and upper y-limits of integration in For-

mula (1). 

Step 2. Imagine moving the line drawn in Step 1 first to the left and then to the right (below 

figure). The leftmost position where the line intersects the region R is x = a, and the rightmost 

position where the line intersects the region R is x = b. This yields the limits for the x-

integration in Formula (1). 

 



Chapter 4: Double Integrals 

152 
 

Example 4.6 Evaluate  

 

over the region R enclosed between y = 1/2 x, y =√x, x = 2, and x = 4. 

Solution: 

We view R as a type I region. The region R and a vertical line corresponding to a fixed x are 

shown in Figure a. This line meets the region R at the lower boundary y = (½)x and the upper 

boundary y =√x. These are the y-limits of integration. Moving this line first left and then right 

yields the x-limits of integration, x = 2 and x = 4. Thus, 

 

 

Determining Limits of Integration: Type II Region 

Step 1. Since y is held fixed for the first integration, we draw a horizontal line through the 

region R at a fixed value y (following figure). This line crosses the boundary of R twice. The 

leftmost point of intersection is on the curve x = h1(y) and the 

rightmost point is on the curve x = h2(y). These intersections de-

termine the x-limits of integration in (2). 

Step 2. Imagine moving the line drawn in Step 1 first down and 

then up (following figure). The lowest position where the line in-

tersects the region R is y = c, and the highest position where the 

line intersects the region R is y = d. This yields the y-limits of in-

tegration in (2). 
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Example 4.7 Evaluate 

 

over the triangular region R enclosed between the lines y = −x + 1, y = x + 1, and y = 3. 

Solution: We view R as a type II region. The region R and a horizontal line corresponding to 

a fixed y are shown in below figure. This line meets the region R at its left-hand boundary x = 

1 − y and its right-hand boundary x = y − 1. These are the x-limits of integration. Moving this 

line first down and then up yields the y-limits, y = 1 and y = 3. Thus, 

 

 

Example 4.8 Find the volume of the solid bounded by the cylinder x
2
 + y

2
 

= 4 and the planes y + z = 4 and z = 0. 

Solution: The solid shown in below figure is bounded above by the plane 

z = 4 – y and below by the region R within the circle x
2
 + y

2
 = 4. The vol-

ume is given by 
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4.3 DOUBLE INTEGRALS IN POLAR COORDINATES 

4.3.1 Simple Polar Regions 

Definition A simple polar region in a polar coordinate system is a region that is enclosed be-

tween two rays, θ = α and θ = β, and two continuous polar curves, r = r1(θ) and r = r2(θ), 

where the equations of the rays and the polar curves satisfy the following conditions: 

(i) α ≤ β      (ii) β − α ≤ 2π       (iii) 0 ≤ r1(θ) ≤ r2(θ) 

 

A polar rectangle is a simple polar region for which the bounding polar curves are circular 

arcs. For example, the following Figure shows the polar rectangle R given by 1.5 ≤ r ≤ 2,     

π/6 ≤ θ ≤ π/4 

 

 

4.3.2 Double Integrals in Polar Coordinates 

The volume problem in polar coordinates Given a 

function f(r, θ) that is continuous and non-negative on a 

simple polar region R, find the volume of the solid that 

is enclosed between the region R and the surface whose 

equation in cylindrical coordinates is z = f(r, θ) (see the  

figure). 
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If f(r, θ) is continuous on R and has both positive and negative values, then the limit 

 

represents the net signed volume between the region R and the surface z = f(r, θ) (as with 

double integrals in rectangular coordinates). The sums are called polar Riemann sums, and 

the limit of the polar Riemann sums is denoted by 

 

which is called the polar double integral of f(r, θ) over R. If f(r, θ) is continuous and 

nonnegative on R, then the volume can be expressed as 

 

4.3.3 Evaluating Polar Double Integrals 

Theorem  

If R is a simple polar region whose boundaries are the rays θ = α and θ = β and the curves r 

= r1(θ) and r = r2(θ) shown in the below figure, and if f(r, θ) is continuous on R, then 

                    (1) 

 

Determining Limits of Integration for a Polar Double Integral: Simple Polar Region 

Step 1. Since θ is held fixed for the first integration, draw a radial line from the origin 

through the region R at a fixed angle θ (Figure a). This line crosses the boundary of R at most 

twice. The innermost point of intersection is on the inner boundary curve r = r1(θ) and the 

outermost point is on the outer boundary curve r = r2(θ). These intersections determine the r-

limits of integration in (1). 
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Step 2. Imagine rotating the radial line from Step 1 about the origin, thus sweeping out the 

region R. The least angle at which the radial line intersects the region R is θ = αand the great-

est angle is θ = β (Figure b). This determines the θ-limits of integration. 

 

 

Example 4.11 Evaluate 

∬ sin 𝜃 𝑑𝐴
1

𝑅

 

where R is the region in the first quadrant that is outside the circle r = 2 and inside the cardi-

oid r = 2(1 + cos θ). 

Solution: The region R is sketched in the following figure. Following the two steps outlined 

above we obtain 
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Example 4.12 The sphere of radius a centered at the origin is expressed in rectangular coor-

dinates as x
2
 + y

2
 + z

2
 = a

2
, and hence its equation in cylindrical coordinates is r

2
 + z

2
 = a

2
. 

Use this equation and a polar double integral to find the volume of the sphere. 

Solution: In cylindrical coordinates the upper hemisphere is 

given by the equation 

 

so the volume enclosed by the entire sphere is 

 

where R is the circular region shown in following figure. 

Thus, 

 

 

4.4 TRIPLE INTEGRALS 

4.4.1 Definition of a Triple Integral 

To define the triple integral of f(x, y, z) over G, we first divide the box into n “sub-boxes” by 

planes parallel to the coordinate planes. We then discard those sub-boxes that contain any 

points outside of G and choose an arbitrary point in each of the remaining sub-boxes. As 

shown in the figure, we denote the volume of the kth remaining sub-box by ΔVk and the point 

selected in the kth sub-box by (𝑥𝑘
∗ , 𝑦𝑘

∗ , 𝑧𝑘
∗). Next we form the product 
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for each sub-box, then add the products for all of the sub-boxes to obtain the Riemann sum 

 

Finally, we repeat this process with more and more subdivisions in such a way that the 

length, width, and height of each sub-box approach zero, and n approaches +∞. The limit 

 

is called the triple integral of f(x, y, z) over the region G.   

4.4.2 Properties of Triple Integrals 

 

Moreover, if the region G is subdivided into two sub-regions G1 and G2 (following figure), 

then 
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4.4.3 Evaluating Triple Integrals over Rectangular Boxes 

Theorem (Fubini’s Theorem∗) Let G be the rectangular box defined by the inequalities 

a ≤ x ≤ b, c ≤ y ≤ d, k ≤ z ≤ l 

If f is continuous on the region G, then 

      (1) 

Moreover, the iterated integral on the right can be replaced with any of the five other iterated 

integrals that result by altering the order of integration. 

Example 4.15 Evaluate the triple integral 

 

over the rectangular box G defined by the inequalities −1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2. 

Solution: Of the six possible iterated integrals we might use, we will choose the one in (1). 

Thus, we will first integrate with respect to z, holding x and y fixed, then with respect to y, 

holding x fixed, and finally with respect to x. 
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4.4.4 Evaluating Triple Integrals over More General Regions 

Theorem Let G be a simple xy-solid with upper surface z = g2(x, y) and lower surface z = 

g1(x, y), and let R be the projection of G on the xy-plane. If f(x, y, z) is continuous on G, then 

    (2) 

 

 

Determining Limits of Integration: Simple xy-Solid 

Step 1. Find an equation z = g2(x, y) for the upper surface and an equation z = g1(x, y) for the 

lower surface of G. The functions g1(x, y) and g2(x, y) determine the lower and upper z-limits 

of integration. 

Step 2. Make a two-dimensional sketch of the projection R of the solid on the xy-plane. From 

this sketch determine the limits of integration for the double integral over R in (2). 

 Example 4.16 Let G be the wedge in the first octant that is cut from the cylindrical solid y
2
 + 

z
2
 ≤ 1 by the planes y = x and x = 0. Evaluate 

 

Solution. The solid G and its projection R on the xy-plane are shown 

in the figure. The upper surface of the solid is formed by the cylin-

der and the lower surface by the xy-plane. Since the portion of the 

cylinder y
2
 + z

2
 = 1 that lies above the xy-plane has the equation 

𝑧 = √1 − 𝑦2, and the xy-plane has the equation z = 0, it follows 

from (2) that 
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For the double integral over R, the x- and y-integrations can be performed in either order, 

since R is both a type I and type II region. We will integrate with respect to x first. With this 

choice, yields 

 

4.4.5 Volume Calculated As a Triple Integral 

 

Example 4.17 Use a triple integral to find the volume of the solid within the cylinder x
2
 + y

2
 

= 9 and between the planes z = 1 and x + z = 5. 

Solution: The solid G and its projection R on the xy-plane are shown in Figure. The lower 

surface of the solid is the plane z = 1 and the upper surface is the plane x + z = 5 or, equiva-

lently, z = 5 − x. Thus, 

 

For the double integral over R, we will integrate with respect to y first. Thus,  

 

 



Chapter 4: Double Integrals 

162 
 

Example 4.18 Find the volume of the solid enclosed between the paraboloids z = 5x
2
 + 5y

2
 

and z = 6 − 7x
2
 − y

2
 

Solution: The solid G and its projection R on the xy-plane are shown in Figure. The projec-

tion R is obtained by solving the given equations simultaneously to determine where the pa-

raboloids intersect. We obtain 

5x
2
 + 5y

2
 = 6 − 7x

2
 − y

2
 

or 

2x
2
 + y

2
 = 1 

which tells us that the paraboloids intersect in a curve on the elliptic cylinder given by (2x
2
 + 

y
2
 = 1). The projection of this intersection on the xy-plane is an ellipse with this same equa-

tion. Therefore, 

 

 

 


