
 
1 

Chapter 1 

(Measurements) 

To describe natural phenomena, we must make measurements of 

various aspects of nature. Each measurement is associated with a physical 

quantity, such as the length of an object. The laws of physics are 

expressed as mathematical relationships among physical quantities. 

In 1960, an international committee established a set of standards for the 

fundamental quantities of science. It is called the SI (System 

International), and its fundamental units of length, mass, and time are the 

meter, kilogram, and second, respectively. Other standards for SI 

fundamental units established by the committee are those for temperature 

(kelvin), electric current (ampere), luminous intensity (candela), and the 

amount of substance (mole). 

In mechanics, the fundamental quantities are length, mass, and time. 

All other quantities in mechanics can be expressed in terms of these three. 

Most other variables are derived quantities, those that can be expressed 

as a mathematical combination of fundamental quantities. Common 

examples are area (a product of two lengths) and speed (a ratio of a 

length to a time interval). Another example of a derived quantity is 

density.  

The density ρ (Greek letter rho) of any substance is defined as its 

mass per unit volume: 
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Chapter 2 

(Motion in One Dimension) 

2.1   Position, Velocity, and Speed 

 A particle’s position (x) is ( The location of the particle with 

respect to a chosen reference point that we can consider to be the 

origin of a coordinate system). 

 The displacement (Δ x) of a particle is defined as (its change in 

position in some time interval). As the particle moves from an 

initial position ( xi ) to a final position ( xf ), its displacement is 

given by: 

Δ x = xf - xi            Displacement             (2.1) 

We use the capital Greek letter delta (Δ) to denote the change in a 

quantity. 

 From this definition, we see that (Δ x) is positive if (xf ) is greater 

than ( xi ) and negative if (xf )is less than ( xi). 

It is very important to recognize the difference between displacement 

and distance traveled.  

 Distance (is the length of a path followed by a particle). 

 Distance is always represented as a positive number, whereas 

displacement can be either positive or negative. 

 Displacement is an example of a vector quantity. Many other 

physical quantities, including position, velocity, and acceleration, 

also are vectors.  

 In general, a vector quantity requires the specification of both 

direction and magnitude. Scalar quantity has a numerical value 

and no direction. 
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 The average velocity (vx,avg) of a particle is defined as (the 

particle’s displacement (Δx) divided by the time interval (Δt) 

during which that displacement occurs):      

vx,avg = 
  

  
      (2.2) 

         Where, the subscript (x) indicates motion along the (x-axis).  

From this definition we see that average velocity has dimensions of                  

length divided by time, or meters per second (m/s) in SI units. 

 The average velocity of a particle moving in one dimension can be 

positive or negative, depending on the sign of the displacement.  

 The time interval (Δt) is always positive. 

If the velocity of a particle is constant, its instantaneous velocity at any 

instant during a time interval is the same as the average velocity over the 

interval. That is, vx = vx,avg.  

vx = 
  

  
 

Remembering that Δ x = xf - xi , we see that vx = (xf - xi ) /Δt , or 

xf  = xi + vx Δt 

In practice, we usually choose the time at the beginning of the interval to 

be ti= 0 and the time at the end of the interval to be tf = t, so our equation                 

becomes:                   xf  = xi + vx t   ( for constant vx )             (2.3) 

 The average speed (vavg) of a particle, a scalar quantity, is defined 

as (the total distance (d) traveled divided by the total time interval 

required to travel that distance): 

vavg = 
 

  
           (Average speed)                          (2.4) 

The SI unit of average speed is the same as the unit of average velocity: 

(meters per second)(m/s).  

 Average speed has no direction and is always expressed as a 

positive number. 
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2.2  Instantaneous Velocity and Speed 

 The instantaneous velocity (vx) equals the limiting value of the 

ratio (Δx/Δt) as (Δt) approaches zero: 

vx =           
  

  
                                             (2.5) 

In calculus notation, this limit is called the derivative of (x) with respect 

to (t), written (dx/dt):  

            vx = 
  

  
        (instantaneous velocity)                       (2.6)  

The instantaneous velocity can be positive, negative, or zero. 

 The instantaneous speed of a particle is defined as (the magnitude 

of its instantaneous velocity). As with average speed, instantaneous 

speed has no direction associated with it. 

Example (2.1): 

A particle moves along the (x – axis). Its position varies with time 

according to the expression: (x = - 4t + 2t
2
), where (x) is in meters and 

 (t) in seconds. 

(A) Determine the displacement of the particle in the time intervals    

(t = 0) to (t =1 s) and (t = 1 s) to (t =3 s). 

(B) Calculate the average velocity during these two time intervals. 

(C) Find the instantaneous velocity of the particle at (t = 2.5 s). 

Solution: 

(A): In the first time interval, (t = 0) to (t =1 s):            

Δ x = xf - xi 

   = [- 4 (1) + 2 (1)
2
] – [- 4 (0) + 2 (0)

2
] = - 2 m. 

For the second time interval (t = 1 s) to (t =3 s): 

   = [- 4 (3) + 2 (3)
2
] – [- 4 (1) + 2 (1)

2
] = + 8 m. 

 

(B): In the first time interval, use equation (2.2) with Δ t = tf - ti = 1 s: 
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vx,avg = 
  

  
 = 

   

   
 =        

In the second time interval, Δ t = tf - ti = 2 s: 

vx,avg = 
  

  
 = 

  

  
 = +       

( C ): Instantaneous velocity       vx = 
  

  
  , x = - 4t + 2t

2
 

vx = 
  

  
 = - 4 + 4 t , at t = 2.5 s : 

vx = - 4 + 4 (2.5) = + 6     

2.3 Acceleration  

 When the velocity of a particle changes with time, the particle is 

said to be accelerating. 

 The average acceleration ( ax,avg ) of the particle is defined as  

(The change in velocity (Δvx) divided by the time interval (Δt) 

during which that change occurs): 

           ax,avg = 
   

  
 = 

        

      
                  Average acceleration    (2.7) 

The unit of acceleration is meters per second squared (m/s
2
). 

 

 The instantaneous acceleration equals the derivative of the velocity 

with respect to time: 

ax = 
   

  
              Instantaneous acceleration                       (2.8) 

 For the case of motion in a straight line, the direction of the 

velocity of an object and the direction of its acceleration are related 

as follows: When the object’s velocity and acceleration are in the 

same direction, the object is speeding up. On the other hand, when 

the object’s velocity and acceleration are in opposite directions, the 

object is slowing down. 

 Because   vx = 
  

  
, the acceleration can also be written as: 

ax = 
   

  
 = = 

 

  
(
  

  
) = 

   

   
                          (2.9) 
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That is, in one-dimensional motion, the acceleration equals the second 

derivative of (x) with respect to time. 

 Example (2.2): 

The velocity of a particle moving along the (x- axis) varies according to 

the expression (vx = 40 - 5t
2
), where vx is in meters per second and (t) in 

seconds. 

(A) Find the average acceleration in the time interval (t = 0 to t = 2 s). 

(B) Determine the acceleration at t =2 s. 

Solution: 

(A)  vx1 = 40 - 5t
2
 = 40 – 5 (0)

2
 = 40 m/s 

vx2 = 40 - 5t
2
 = 40 – 5 (2)

2
 = 20 m/s 

ax,avg = 
   

  
 = 

      

    
 = - 10 m/s

2
 

The negative sign indicates that the particle is slowing down. 

(B)                      ax = 
   

  
 , vx = 40 - 5t

2
  

                   ax = - 10 t = -10 (2) = - 20 m/s
2
 

 

2.4  Particles under Constant Acceleration 

 
If the acceleration of a particle varies in time, its motion can be 

complex and difficult to analyze. A very common and simple type of one-

dimensional motion, however, is that in which the acceleration is 

constant. In such case, the average acceleration (ax,avg) over any time 

interval is numerically equal to the instantaneous acceleration (ax) at any 

instant within the interval, and the velocity changes at the same rate 

throughout the motion. This situation is considered to be the          

particle under constant acceleration. 

If we replace (ax,avg ) by (ax) in equation (2.7) and take ti = 0 and ( tf ) to 

be any later time ( t), we find that: 
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ax =  
        

    
     

         + ax t     (for constant ax)                           (2.10) 

We can express the average velocity in any time interval:  

       =  
        

  
              (for constant ax)          (2.11) 

Notice that this expression for average velocity applies only in situations 

in which the acceleration is constant. 

We can now use equations 2.1, 2.2, and 2.11 to obtain the position of an 

object as a function of time. Recalling that Δx in equation (2.2) represents 

(xf - xi) and recognizing that Δt = tf - ti = t – 0 = t, we find that: 

xf  - xi =           
 

 
 (       ) t  

 xf  = xi  
 

 
 (       ) t              (for constant ax)          (2.12) 

This equation provides the final position of the particle at time (t) in 

terms of the initial and final velocities. 

We can obtain another useful expression for the position of a particle 

under constant acceleration by substituting equation (2.10) into equation 

(2.12): 

               xf  = xi  
 

 
 [         + ax t )] t                                                      

xf  = xi       
 

 
 ax t

2
        (for constant ax)          (2.13) 

This equation provides the final position of the particle at time (t) in 

terms of the initial position, the initial velocity, and the constant 

acceleration. Finally, we can obtain an expression for the final velocity 

that does not contain time as a variable by substituting the value of (t) 

from equation (2.10) into equation (2.12): 

xf  = xi  
 

 
 (       )( 

        

  
)= xi  (

   
     

 

   
) 

   
     

  + 2ax (xf  - xi )  (for constant ax)          (2.14)  
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This equation provides the final velocity in terms of the initial velocity, 

the constant acceleration, and the position of the particle. 

When the acceleration of a particle is zero, its velocity is constant and its 

position changes linearly with time. 

Equations (2.10), (2.12), (2.13), and (2.14) are called  

Kinematic Equations for motion of a particle under constant 

acceleration. These equations are listed in the table below:  

Equation Information Given by 

Equation 

               + ax t Velocity as a function of 

time 

  xf  = xi  
 

 
        ) t Position as a function of 

velocity and time 

   xf  = xi       
 

 
 ax t

2
 Position as a function of time 

   
     

 +2ax(xf  - xi ) Velocity as a function of 

position 

Example (2.3): 

A car traveling at a constant speed of (45 m/s) passes a trooper on a 

motorcycle hidden behind a billboard. One second after the speeding car 

passes the billboard; the trooper sets out from the billboard to catch the 

car, accelerating at a constant rate of (3 m/s
2
). How long does it take him 

to overtake the car? 

Solution: 
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 First, we write expressions for the position of each vehicle as a 

function of time. It is convenient to choose the position of the billboard as 

the origin and to set tB = 0 as the time the trooper begins moving. At that 

instant, the car has already traveled a distance of (45 m) from the 

billboard because it has traveled at a constant speed of vx = 45 m/s for 1 s. 

Therefore, the initial position of the speeding car is xB = 45 m. 

Apply equation (2.3) to give the car’s position at any time (t): 

 

xcar= xB + vx car t 

 

At (t = 0), this expression gives the car’s correct initial position when the 

trooper begins to move: xcar= xB = 45 m 

The trooper starts from rest at tB = 0 and accelerates at ax = 3 m/s
2
 away 

from the origin. Use equation (2.13) to give his position at any time (t): 

xf  = xi       
 

 
 ax t

2
 

xtrooper  = 0      
 

 
 ax t

2
 = 

 

 
 ax t

2
 

Set the positions of the car and trooper equal to represent the trooper 

overtaking the car at position (C):  xtrooper  =  xcar 

 

 
 ax t

2
 = xB + vx car t 

Rearrange:                        
 

 
 ax t

2
 - vx car t - xB = 0 

    t
2
 - 45t - 45 = 0 

t= 31 s. 

 

2.5  Freely Falling Objects 

 A freely falling object is (any object moving freely under the 

influence of gravity alone, regardless of its initial motion). 

 We denote the magnitude of the free-fall acceleration by the 

symbol (g). The value of (g) decreases with increasing altitude 
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above the Earth’s surface. Furthermore, slight variations in (g) 

occur with changes in latitude. At the Earth’s surface, the value of 

(g) is approximately equal 9.80 m/s
2
. 

 Note that the motion is in the vertical direction (the y direction) 

rather than in the horizontal direction (x) 

 We choose (g= - 9.80 m/s
2
), where the negative sign means that 

the acceleration of a freely falling object is downward. 

Example (2.4): 

A stone thrown from the top of a building is given an initial velocity 

of 20 m/s straight upward. The stone is launched 50 m above the ground, 

and the stone just misses the edge of the roof on its way down as shown 

in the figure below.  

(A)  Using tA= 0 as the time the stone leaves the thrower’s hand at position 

A. Determine the time at which the stone reaches its maximum 

height? 

Solution: 

Use equation (2.10) to calculate  

the time at which the stone reaches 

 its maximum   height: 

               + ay t ,  

   t = 
             

   
 = tB  

    t = 
    

    
 = 2.04 s 

(B) Find the maximum height 

 of the stone? 

As in part (A), choose the initial 

 and final points at the beginning  

and the end of the upward flight.  

Set (yA= 0) and substitute the time 
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 from part (A) into equation (2.13)  to find the maximum height: 

ymax  = yB = yA +vyAt + 
 

 
 ay t

2
 

 yB = 0 +(20)(2.04) + 
 

 
 (-9.8)(2.04)

2
 = 20.4 m 

  ( C ) Determine the velocity of the stone when it returns to the height 

from which it was thrown? 

Choose the initial point where the stone is launched and the final point 

when it passes this position coming down. 

Substitute known values into equation (2.14): 

   
     

 +2ay (yC  - yA) 

                                  
    = (20)

2
 + 2 (- 9.8)(0 - 0) = 400 m

2
/ s

2
 

      20 m/s.     

When taking the square root, we could choose either a positive or a 

negative root. We choose the negative root because we know that the 

stone is moving downward at point C. The velocity of the stone when it 

arrives back at its original height is equal in magnitude to its initial 

velocity but is opposite in direction. 

 ( D ) Find the velocity and position of the stone at t = 5 s? 

Choose the initial point just after the throw and the final point (5 s.) later. 

Calculate the velocity at (D) from equation (2.10): 

               + ay t = 20 + (-9.8)( 5)= - 29 m/s 

Use equation (2.13) to find the position of the stone at  tD = 5 s: 

 

yD = yA +vyAt + 
 

 
 ay t

2
  

                    = 0 + (20) ( 5) + 
 

 
 (- 9.8) (5)

2
  

= - 22.5 m 
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Chapter 3 

Vectors 

3.1 Vector and Scalar Quantities 

 A scalar quantity is completely specified by a single value with an 

appropriate unit and has no direction. 

Examples of scalar quantities are temperature, volume, mass, speed, and 

time intervals. 

 A vector quantity is completely specified by a number with an 

appropriate unit plus a direction. 

Examples of vector quantity are displacement and velocity. 

 

3.2 Some Properties of Vectors 

Adding Vectors 

When two vectors (vector  ⃗ and vector  ⃗⃗ ) are added, the sum is 

independent of the order of the addition. This property is known as the 

(commutative law of addition): 

  

 ⃗   ⃗⃗   ⃗⃗    ⃗ 

 

Another property is called the associative law of addition: 

 

 ⃗     ⃗⃗⃗⃗    ⃗    ⃗    ⃗⃗⃗⃗     ⃗ 
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 A vector quantity has both magnitude and direction and also obeys 

the laws of vector addition. 

Negative of a Vector 

 

The negative of the vector  ⃗ is defined as the vector that when added to  ⃗ 

gives zero for the vector sum. That is,  ⃗  (  ⃗)   . The vectors  ⃗ and 

 (- ⃗   have the same magnitude but point in opposite directions. 

Subtracting Vectors 

 

The operation of vector subtraction makes use of the definition of the 

negative of a vector. We define the operation (  ⃗   ⃗⃗ ) as vector 

   ⃗⃗⃗  added to vector   ⃗⃗⃗ ):     ⃗   ⃗⃗   ⃗      ⃗⃗   

The geometric construction for subtracting two vectors in this way is 

illustrated in the figure below: 

 

 

3.3  Components of a Vector and Unit Vectors 

Components of a Vector 

Any vector can be completely described by its components. 

Consider a vector ( ⃗⃗⃗ ) lying in the (xy plane) and making an angle ( ) 

with the positive (x-axis) as shown in the figure below. This vector can be 

expressed as the sum of two other component vectors ( ⃗x), which is 

parallel to the (x-axis), and   ⃗⃗⃗y), which is parallel to the (y-axis).  
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 ⃗    ⃗x +  ⃗y 

 

From the figure and the definition of sine and cosine, we see that 

      = Ax / A) and that        Ay / A). Hence, the components of  ⃗ 

Ax = A      and Ay = A       
 

The magnitude and direction of ( ⃗) are related to its components through 

the expressions: 

      A= √  
    

                       (magnitude of   ⃗ ) 

  =       
  

  
 )                    (direction of   ⃗⃗⃗ ) 

 

Unit Vectors 

A unit vector is (a dimensionless vector having a magnitude of exactly 

one, and are used to specify a given direction). 

We shall use the symbols ( î , ĵ , and ƙ ) to represent unit vectors pointing 

in the positive (x, y, and z) directions, respectively. 

The magnitude of each unit vector equals 1; that is,                     =1 

 ⃗x = î    ,  ⃗y =      . Therefore, the unit-vector notation for the vector  ⃗ is: 

 

 ⃗   î          
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 Consider a point lying in the xy plane and having Cartesian 

coordinates (x, y) as in the figure below. The point can be specified 

by the position vector   ⃗  which in unit-vector form is given by: 

 

 

 

 

 

  ⃗⃗⃗            

 

 The resultant vector (  ⃗⃗ =  ⃗    ⃗⃗ ) is: 

 

 ⃗⃗ = (î         ) + (î         )  or 

 

 ⃗⃗ = î                   ) 

 

Because  ⃗⃗        +      , we see that the components of the resultant 

vector are:     = (       ) and   = (       ). 

The magnitude of    ⃗⃗  and the angle it makes with the (x- axis) are 

obtained from its components using the relationships: 

R = √  
    

  = √                              Magnitude of  ⃗⃗ 

 

      
  

   
 = 

       

       
              Direction of  ⃗⃗ 

 If  ⃗       ⃗⃗ both have three components ( x,y,z ), they can be 

expressed in the form:   

 ⃗   î               

 ⃗⃗   î               

The sum of   ⃗       ⃗⃗ is:       ⃗⃗ =  ⃗    ⃗⃗            or 

 ⃗⃗ = î                   ) +              
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Example (3.1): 

 

Find the sum of two displacement vectors  ⃗       ⃗⃗ lying in the xy plane 

and given by:      ⃗           m   and      ⃗⃗           m. 

Solution: 

The resultant vector   ⃗⃗ :  ⃗⃗ =  ⃗    ⃗⃗ = î                   ) 

                                                         = î               ) 

The components of  ⃗⃗ :        m     and        -2 m 

 

The magnitude of    ⃗⃗ : R = √  
    

  = √           =√   = 4.5 m 

 

The direction of  ⃗⃗ :       
  

   
 = 

  

  
 = - 0.5 

 

                                             = - 27   

This answer is correct if we interpret it to mean 27° clockwise from  

the (x – axis). 

3.4  Scalar Product  

The scalar product of any two vectors  ⃗       ⃗⃗ is defined as (a scalar 

quantity equal to the product of the magnitudes of the two vectors and the 

cosine of the angle   between them): 

 ⃗ •  ⃗⃗           

We write scalar product of vectors  ⃗       ⃗⃗ as  ⃗ •  ⃗⃗ (Because of the dot 

symbol, the scalar product is often called the dot product). 

 The scalar product   ⃗ •  ⃗⃗  equals the magnitude of   ⃗ multiplied 

by the projection of  ⃗⃗ onto  ⃗  (B        as shown in the figure 

below. 
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Properties of the scalar product: 

1. Scalar product is commutative: 

 ⃗ •  ⃗⃗   ⃗⃗ •  ⃗⃗⃗⃗  

2. Scalar product obeys the distributive law of multiplication: 

 ⃗ •   ⃗⃗⃗⃗⃗    ⃗) =  ⃗ •  ⃗⃗    ⃗ •  ⃗ 

3. If  ⃗ is perpendicular to  ⃗⃗ (  = 90° ), then  ⃗ •  ⃗⃗   . 

4. If  ⃗ is parallel to  ⃗⃗ (  = 0° ), then  ⃗ •  ⃗⃗    . 

5. If    = 180°, then  ⃗ •  ⃗⃗     . 

6. The scalar product is negative when ( 90°˂   ≤ 180°). 

  •      •     •      

  •      •      •     

Two vectors  ⃗  and  ⃗⃗ can be expressed in unit vector form as: 

 ⃗  =   x +   y +   z 

 ⃗⃗  =   x +   y +   z 

so     ⃗ •  ⃗⃗    x x +  y y +  z z         ⃗ •  ⃗ =  2
 . 

Example (3.2):  

 

The vectors  ⃗  and  ⃗⃗ are given by:  ⃗  =    +    and  ⃗⃗=    +    

(A)  Determine the scalar product  ⃗ •  ⃗⃗ 

(B)  Find the angle (  ) between  ⃗  and  ⃗⃗ 

Solution: 

(A)   ⃗ •  ⃗⃗      +    ) •     +    ) 

           =     •       •        •   +    •    

           =             

(B)  The magnitude of  ⃗ :  A = √  
    

  = √          =√                                

The magnitude of  ⃗⃗ :  B = √  
    

  = √           =√       

      
 ⃗⃗⃗ •  ⃗⃗⃗

  
 = 

 

√  √ 
 = 

 

√  
  

        

√  
  60.3° 
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3.5  Vector Product 

(Given any two vectors  ⃗       ⃗⃗, the vector product   ⃗    ⃗⃗⃗⃗⃗ is defined 

as a third vector   ⃗⃗⃗⃗⃗, which has a magnitude of          ). 

 ⃗    ⃗   ⃗⃗                                      Vector product 

C =                       magnitude of vector product 

 The vector product  ⃗   ⃗⃗) is also called (cross product). 

Properties of the vector product: 

1. It is not commutative ( ⃗   ⃗⃗     ⃗⃗   ⃗   Therefore, if you 

change the order of the vectors in a vector product, you must 

change the sign. 

2. If  ⃗ is parallel to  ⃗⃗ (  = 0 or 180° ), then 

 ⃗   ⃗⃗         and       ⃗   ⃗    

3. If  ⃗ is perpendicular  to  ⃗⃗  (  = 90° ), then 

| ⃗   ⃗⃗|= AB 

4. The vector product obeys the distributive law: 

 ⃗  ( ⃗⃗    ⃗)    ⃗   ⃗⃗   ⃗   ⃗ 

5. The derivative of the vector product with respect to some variable 

such as (t ) is:               
 

  
   ⃗   ⃗⃗  

  ⃗

  
   ⃗⃗ +  ⃗  

  ⃗⃗

  
 

 The cross products of the unit vectors ( î , ĵ , and ƙ ) obey the 

following rules:                       

              ,                                           

              ,              

              ,              

The cross product of any two vectors  ⃗⃗⃗⃗        ⃗⃗  

can be expressed in the following determinant form: 
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 ⃗   ⃗⃗  |

     
      

      

|= î|
    

    
|+  |

    

    
|   |

    

    
| 

=   (                                           

Example (3.3): 

Two vectors lying in the (xy plane) are given by the equations: 

 ⃗  =    +    and  ⃗⃗=    +    

Find   ⃗   ⃗⃗ and verify that ( ⃗   ⃗⃗     ⃗⃗   ⃗    

Solution: 

 ⃗   ⃗⃗      +    )       +    ) 

           =                              ) +          

           = 0 + 4   + 3   + 0 = 7   

To verify that            ⃗   ⃗⃗     ⃗⃗   ⃗ : 

 ⃗⃗   ⃗ =     +    )      +    ) 

             =     )      +     )     +         +        

             = 0 - 3  - 4   + 0 = - 7   

Therefore      ⃗   ⃗⃗     ⃗⃗   ⃗ 

Example (3.4): 

Vector  ⃗ has a magnitude of 6 units and it is in the direction of 

positive x- axis. Vector  ⃗⃗ has a magnitude of 4 units and lies in xy- 

plane making an angle 30° with x- axis. Find  ⃗   ⃗⃗ ? 

Solution: 

 ⃗ = 6   +     +0   

 ⃗⃗ = 4         + 4         + 0     2√3   + 2   

  ⃗     ⃗   ⃗⃗  |
     
   

 √    

| = 12   
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Chapter 4  

(Motion in Two Dimensions) 

4.1  The Position, Velocity, and Acceleration Vectors 
 

We begin by describing the position of the particle by its position 

vector   ⃗), drawn from the origin of some coordinate system to the 

location of the particle in the (xy plane) as shown in the figure. 

At time ti, the particle is at point (A), described by position vector  ⃗i . 

At some later time tf , it is at point (B), described by position vector  ⃗f . 

The path from (A) to (B) is not necessarily a straight line. As the particle 

moves from (A) to (B) in the time interval (Δt = tf - ti), its position vector 

changes from  ⃗i to  ⃗f . 

We now define the displacement vector (Δ ⃗) for a particle as being (the 

difference between its final position vector and its initial position vector): 

Δ ⃗   ⃗i -  ⃗f                Displacement vector                         (4.1) 

 

 

As we see from the figure, the magnitude 

 of (Δ ⃗) is less than the distance traveled  

along the curved  path followed by 

 the particle. 

 

                                                                            

 The average velocity (  ⃗⃗ave) of a particle during the time interval 

(Δt) as the displacement of the particle divided by the time interval: 

 ⃗⃗ave = 
  ⃗

  
                         Average velocity                                 (4.2) 

 Multiplying or dividing a vector quantity by a positive scalar 

quantity such as (Δt) changes only the magnitude of the vector, not 
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its direction. Because displacement is a vector quantity and the 

time interval is a positive scalar quantity, we conclude that the 

average velocity is a vector quantity directed along (Δ ⃗). 

 The average velocity between points is independent of the path 

taken. 

 The instantaneous velocity ( ⃗⃗) is defined as (the limit of the 

average velocity  
  ⃗

  
  as Δt approaches zero): 

 ⃗⃗          
  ⃗

  
 = 

  ⃗

  
               Instantaneous velocity             (4.3) 

 The magnitude of the instantaneous velocity vector  (v = | ⃗⃗| ) of a 

particle is called the speed of the particle, which is a scalar 

quantity. 

 The average acceleration   ⃗⃗ave) of a particle is defined as (the 

change in its instantaneous velocity vector (Δ ⃗⃗) divided by the time 

interval Δt during which that change occurs): 

 ⃗⃗ave = 
  ⃗⃗

  
 = 

 ⃗⃗    ⃗⃗ 

      
                     Average acceleration                 (4.4) 

Average acceleration is a vector quantity. 

 The instantaneous acceleration   ⃗⃗  is defined as (the limiting 

value of the ratio 
  ⃗⃗

  
 as Δt approaches zero): 

 ⃗⃗          
  ⃗⃗

  
 = 

  ⃗⃗

  
               Instantaneous acceleration      (4.5) 
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4.2 Two-Dimensional Motion with Constant Acceleration 

 

Motion in two dimensions can be modeled as two independent 

motions in each of the two perpendicular directions associated with the x 

and y axes. That is, any influence in the y direction does not affect the 

motion in the x direction and vice versa. 

The position vector for a particle moving in the xy plane can be written: 

 ⃗     +                                   (4.6) 

The velocity of the particle: 

 ⃗⃗   
  ⃗

  
 =  

  

  
 +  

  

  
 

 ⃗⃗    vx +  vy                              (4.7) 

 

To determine the final velocity at any time t, we obtain: 

 ⃗⃗  ( vix +  x t)   +( viy +  y t)   = ( vix   + viy  )  ( x   +  y  ) t 

 ⃗⃗   ⃗⃗    ⃗⃗ t             Velocity vector as a function of time        (4.8) 

 

Similarly, 

xf = xi + vix t +
 

 
 ax t

2
      and    yf = yi + viy t +

 

 
 ay t

2
 

 

Substituting these expressions into equation (4.6) (and labeling the final 

position vector (  ⃗f ) gives: 

 ⃗f = ( xi + vix t +
 

 
 ax t

2
)   + ( yi + viy t +

 

 
 ay t

2
 )   

    = (xi   + yi   ) + (vix   + viy   ) t +
 

 
 (ax   + ay   ) t

2
 

 ⃗f =  ⃗i +  ⃗⃗   + 
 

 
  ⃗⃗ t

2
    Position vector as a function of time        (4.9) 

 

Example (4.1): 

 

A particle moves in the xy plane, starting from the origin at ( t = 0 ) with 

an initial velocity having an x - component of (20 m/s) and y- component 

of  (-15 m/s). The particle experiences an acceleration in the x - direction, 

given by (ax = 4.0 m/s
2
). 

(A) Determine the total velocity vector at any time. 
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(B) Calculate the velocity and speed of the particle at (t = 5.0 s) and 

the angle the velocity vector makes with the x- axis. 

(C) Determine the x and y coordinates of the particle at any time t and 

its position vector at this time. 

Solution: 

(A) The components of the initial velocity 

tell us that the particle starts by moving 

toward the right and downward. 

The x- component of velocity starts at 20 m/s and increases by 4.0 m/s 

every second. The y - component of velocity never changes from its 

initial value of (-15 m/s). 

 ⃗⃗   ⃗⃗    ⃗⃗ t = ( vix +  x t)   +( viy +  y t)    

 ⃗⃗   [20 + 4 t]    + [ -15 + 0 t ]    

 ⃗⃗   [(20 + 4 t)    - 15   ] m/s 

 

(B)   ⃗⃗   [(20 + 4 t)    - 15   ]= [ {20 + 4(5)     - 15  ]= (40    - 15  ) m/s 

 The angle  :    =         

   
 =       

    

  
 = - 21° 

The negative sign for the angle   indicates that the velocity vector is 

directed at an angle of 21° below the positive x - axis. 

The speed of the particle as the magnitude of   ⃗⃗  : 

vf  = |  ⃗⃗ | =√   
     

  = √             vf  = 43 m/s 

 

        ( C )       xf  =      
 

 
 ax t

2
 

                 xf  = ( 20 t + 2 t
2
 ) m 

              yf  =      = ( - 15 t ) m 

The position vector of the particle at any time t : 

 ⃗f = ( xf    + yf   ) = [( 20 t + 2 t
2
 )   - 15 t   ] m 
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4.3 Projectile Motion 

Anyone who has observed a baseball in motion has observed 

projectile motion. The ball moves in a curved path and returns to the 

ground. The path of a projectile, which we call its trajectory, is always a 

parabola. The expression for the position vector of the projectile as a 

function of time follows directly from equation 4.9, with its acceleration 

being that due to gravity,  ⃗⃗   ⃗⃗ 

 ⃗f =  ⃗i +  ⃗⃗   + 
 

 
  ⃗⃗ t

2
                 (4.10) 

Where the initial x and y components of the velocity of the projectile are: 

           i                          i 

 

 

When analyzing projectile motion, model it to be the superposition 

of two motions: (1) motion of a particle under constant velocity in the 

horizontal direction and (2) motion of a particle under constant 

acceleration (free fall) in the vertical direction. 

 

Horizontal Range and Maximum Height of a Projectile 

Let us assume a projectile is launched from the origin at ti = 0 with 

a positive vyi component as shown in figure above, and returns to the 
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same horizontal level. This situation is common in sports, where 

baseballs, footballs, and golf balls often land at the same level from 

which they were launched. 

Two points in this motion are especially interesting to analyze: 

 The peak point A, which has Cartesian coordinates (R/2, h), and  

 The point B, which has coordinates (R, 0).  

 The distance ( R ) is called the horizontal range of the projectile, 

and the distance  (h) is its maximum height. 

 Let us find ( h ) and (R ) mathematically in terms of vi,  i, and g : 

We can determine (h ) by noting that at the peak vyA =0. Therefore, we 

can use the y component of equation (4.8) to determine the time tA at 

which the projectile reaches the peak: 

 

 ⃗⃗    ⃗⃗    ay t 

0 =         g tA 

tA = 
       

 
 

Substituting this expression for tA into  

the y component of  equation (4.9) and replacing y = yA with h, we obtain 

an expression for h in terms of the magnitude and direction of the initial 

velocity vector: 

h =          ) ( 
       

 
 ) - 

 

 
 g ( 

  
        

  
 ) 

h = 
  

         

  
           Maximum height for the projectile           (4.11)  

 The range R is the horizontal position of the projectile at a time that 

is twice the time at which it reaches its peak, that is,  

at time (tB = 2tA). 

Using the x component of equation (4.9), noting that: 

 

    =     =        , and setting xB = R  at t = 2tA , we find that: 
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R =     tB =         ) (2tA) 

R =        )  
        

 
  =  

   
             

 
 

Using the identity                  , so  

R =
  

       

 
          Horizontal range of the projectile                (4.12) 

The maximum value of R from equation (4.12) is: 

Rmax = 
  

 

 
      because the maximum value of            , which 

occurs when       °. Therefore, R is a maximum when      °. 

 

Example (4.2): 

A long jumper leaves the ground at an angle of 20° above the horizontal 

and at a speed of 11.0 m/s. 

(A) How far does he jump in the horizontal direction? 

(B) What is the maximum height reached? 

Solution: 

(A) :  Use equation (4.12) to find the range of the jumper: 

R =
  

       

 
 = 

                

   
 = 7.94 m 

 

(B):  The maximum height reached by using equation 4.11: 

 

h = 
  

         

  
  

              

       
 = 0.722 m 

 

Example (4.3): 

A stone is thrown from the top of a building upward at an angle of (30°) 

to the horizontal with an initial speed of (20 m/s) as shown in the figure. 

The height from which the stone is thrown is (45 m) above the ground. 

(A) How long does it take the stone to reach the ground? 



 
27 

 

Solution:  (A) We have the information  

xi = yi = 0 , yf = - 45 m, ay = - g , and     20 m/s 

The initial x and y components of the  

stone’s velocity: 

             = 20 cos 30° = 17.3 m/s 

             = 20 sin 30° = 10 m/s 

The vertical position of the stone from the vertical component: 

yf = yi +      + 
 

 
 ay t

2
 

-45 = 0 + 10 t + 
 

 
 (- 9.8) t

2
 

t = 4.22 s 

(B) What is the speed of the stone just before it strikes the ground? 

    =     + ay t 

       = 10 + (- 9.8)(4.22) = - 31.3 m/s 

4.4  Relative Velocity 

We describe how observations made by different observers in 

different frames of reference are related to one another. A frame of 

reference can be described by a Cartesian coordinate system for which an 

observer is at rest with respect to the origin. 

Consider the two observers A and B along the number line in 

figure a.  

Observer A is located at the origin of  

a one-dimensional xA axis, while observer B is at  

the  position xA = -5. We denote the position  

variable as xA because observer A is at the origin 

 of this  axis. Both observers measure the position  

of  point P, which is located at xA = +5. Suppose  
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observer B decides that he is located at the origin of an xB axis as in 

Figure b. Notice that the two observers disagree on the value of the 

position of point P. Observer A claims point P is located at a position 

with a value of +5, whereas observer B claims it is located at a position 

with a value of +10. Both observers are correct, even though they make 

different measurements. Their measurements differ because they are 

making the measurement from different frames of reference. 

Imagine now that observer B in (figure b) is moving to the right along the 

xB axis. Now the two measurements are even more different. Observer A 

claims point P remains at rest at a position with a value of +5, whereas 

observer B claims the position of P continuously changes with time, even 

passing him and moving behind him! Again, both observers are correct, 

with the difference in their measurements arising from their different 

frames of reference. 

We explore this phenomenon further by considering two observers 

watching a man walking on a moving beltway at an airport in figure 

below. The woman standing on the moving beltway sees the man moving 

at a normal walking speed. The woman observing from the stationary 

floor sees the man moving with a higher speed because the beltway speed 

combines with his walking speed. Both observers look at the same man 

and arrive at different values for his speed. Both are correct; the 

difference in their measurements results from the relative velocity of 

their frames of reference. 

 

 

 

 

 

In a more general situation, consider a particle located at point P in the 
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figure. Imagine that the motion of this particle is being described by two 

observers, observer A in a reference frame SA fixed relative to the Earth 

and a second observer B in a reference frame SB moving to the right 

relative to SA (and therefore relative to the Earth) with a constant velocity 

 ⃗⃗BA. In this discussion of relative velocity, we use a double-subscript 

notation; the first subscript represents what is being observed, and the 

second represents who is doing the observing. Therefore, the notation  ⃗⃗⃗BA 

means the velocity of observer B (and the attached frame SB) as measured 

by observer A. With this notation, observer B measures A to be moving 

to the left with velocity ( ⃗⃗AB =    ⃗⃗BA). For purposes of this discussion, let 

us place each observer at his respective origin. We define the time t = 0 as 

the instant at which the origins of the two reference frames coincide in 

space. Therefore, at time t, the origins of the reference frames will be 

separated by a distance   BA t). We label the position P of the particle 

relative to observer A with the position vector  ⃗PA and that relative to 

observer B with the position vector  ⃗PB, both at time t. We see that the 

vectors  ⃗PA and  ⃗PB are related to each other through the expression: 

 ⃗PA =  ⃗PB +  ⃗⃗BA t                          (4.13) 

By differentiating (equation 4.13) with respect to time, noting that  ⃗⃗BA is 

constant, we obtain:          
   ⃗⃗⃗  

  
 = 

   ⃗⃗⃗  

  
 +  ⃗⃗BA 

  ⃗⃗⃗⃗ PA =   ⃗⃗⃗⃗ PB +  ⃗⃗BA         (4.14) 

Where   ⃗⃗⃗⃗ PA is the velocity of the particle at P measured by observer A 

and   ⃗⃗⃗⃗ PB is its velocity measured by B. (We use the symbol   ⃗⃗⃗⃗  for particle 

velocity rather than   ⃗⃗⃗⃗  , which we have already used for the relative 

velocity of two reference frames.) Equations 4.13 and 4.14 are known as 

Galilean transformation equations. 

Although observers in two frames measure different velocities for the 

particle, they measure the same acceleration when  ⃗⃗BA is constant.  
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We can verify that by taking the time derivative  

of equation 4.14: 

   ⃗⃗⃗⃗   

  
 = 

   ⃗⃗⃗⃗   

  
 + 

  ⃗⃗⃗  

  
 

Because  ⃗⃗BA is constant, 
  ⃗⃗⃗  

  
  .  

Therefore, we conclude that (  ⃗⃗PA =  ⃗⃗PB). That is, the acceleration of the 

particle measured by an observer in one frame of reference is the same as 

that measured by any other observer moving with constant velocity 

relative to the first frame. 

Example (4.4): 

A boat crossing a wide river moves with a speed of 10 km/h 

relative to the water. The water in the river has a uniform speed of 5km/h 

due east relative to the Earth. 

(A) If the boat heads due north, determine the velocity of the boat 

relative to an observer standing on either bank. 

Solution: 

We know  ⃗⃗br, the velocity of the boat relative  

to the river, and  ⃗⃗rE, the velocity of the river 

 relative to the Earth. 

What we must find is  ⃗⃗bE, the velocity of the  

boat relative to the Earth. The relationship 

 between these three quantities is  ⃗⃗bE =  ⃗⃗br +  ⃗⃗rE . 

The quantity  ⃗⃗br is due north;  ⃗⃗rE is due east; and the vector sum of the 

two,  ⃗⃗bE, is at an angle   as defined in the figure a. 

  bE = √   
     

  = √           = 11.2 km/h 

Find the direction of   ⃗⃗bE  :     =         

   
 =       

  
 = 26.6° 

The boat is moving at a speed of 11.2 km/h in the direction 26.6° east of 

north relative to the Earth. 
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Chapter 5  

(Force and Motion) 

The Laws of Motion 

5.1 Newton’s First Law of Motion: 

Newton’s First Law of Motion Sometimes called the ( law of inertia). 

The term inertia is described as (the tendency of an object to resist 

changes in its motion). Another statement of Newton’s first law is  

(In the absence of external forces, an object at rest remains at rest and 

an object in motion continue in motion with a constant velocity in a 

straight line). 

In other words, when no force acts on an object, the acceleration of the 

object is zero; the object is treated with the particle in equilibrium 

model. In this model, the net force on the object is zero:      

   ⃗⃗⃗ ⃗                                              (5.1) 

 

 Force: From the first law, we can define force as that which causes 

a change in motion of an object. 

 Mass: we can define mass is that property of an object that 

specifies how much resistance an object exhibits to changes in its 

velocity. Mass is a scalar quantity. The SI unit of mass is the 

kilogram. Mass should not be confused with weight. Mass and 

weight are two different quantities. The mass of an object is the 

same everywhere. 

 Weight: The weight of an object is equal to the magnitude of the 

gravitational force exerted on the object and varies with location. 

For example, a person weighing (84 kg) on the Earth weighs only 

about (14 kg) on the Moon, that means (1/6) his weighs on the Earth. 
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5.2 Newton’s Second Law 

Newton’s first law explains what happens to an object when no forces 

act on it: it either remains at rest or moves in a straight line with constant 

speed. Newton’s second law answers the question of what happens to an 

object when one or more forces act on it. 

 The acceleration of an object is directly proportional to the force 

acting on it:                           ⃗    ⃗⃗ 

 The magnitude of the acceleration of an object is inversely 

proportional to its mass:         | ⃗⃗|      

Newton’s second law: The acceleration of an object is directly 

proportional to the net force acting on it and inversely proportional to its 

mass:   

                                             ⃗⃗   
   ⃗⃗⃗ ⃗ 

 
 

 

If we choose a proportionality constant of 1, we can relate mass, 

acceleration, and force through the following mathematical statement of 

Newton’s second law: 

   ⃗⃗⃗ ⃗     ⃗⃗         Newton’s second law                    (5.2) 

 

 The net force     ⃗⃗⃗) on an object is the vector sum of all forces 

acting on the object. 

 The SI unit of force is the newton (N). 

 The definition of the newton is: A force of 1 N is the force that, 

when acting on an object of mass 1 kg, produces an acceleration of 

1 m/s
2
.                        

1 N =1 kg . m/s
2
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5.3 The Gravitational Force and Weight 

All objects are attracted to the Earth. The attractive force exerted by 

the Earth on an object is called the gravitational force  ⃗⃗g. This force is 

directed toward the center of the Earth, and its magnitude is called the 

weight of the object. 

A freely falling object experiences an acceleration ( ⃗⃗) acting toward 

the center of the Earth. Applying Newton’s second law    ⃗⃗⃗     ⃗⃗          

to a freely falling object of mass m, with   ⃗⃗     ⃗⃗  and     ⃗⃗⃗    ⃗⃗g , gives 

 ⃗g =    ⃗⃗                                                (5.3) 

 The weight of an object is equal to mg:   F = m g 

 Because it depends on g, weight varies with geographic location. 

Because g decreases with increasing distance from the center of the 

Earth, objects weigh less at higher altitudes than at sea level. 

 

5.4 Newton’s Third Law 

When your finger pushes on the book, the book pushes back on your 

finger. This important principle is known as Newton’s third law: 

(If two objects interact, the force   ⃗⃗⃗
12 exerted by object 1 on object 2 is 

equal in magnitude and opposite in direction to the force   ⃗⃗⃗
21 exerted by 

object 2 on object 1): 

  ⃗⃗⃗ ⃗
12 = -  ⃗21                                 (5.4) 

 

 The force that object 1 exerts on object 2 is popularly called the 

action force, and the force of object 2 on object 1 is called the 

reaction force. 
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 The action and reaction forces act on different objects and must be 

of the same type (gravitational, electrical, etc.). 

Some Applications of Newton's laws: 

Example (5.1): 

A traffic light weighing 122 N hangs from a cable tied to two other 

cables fastened to a support as in the figure a. The upper cables make 

angles of 37° and 53° with the horizontal. These upper cables are not as 

strong as the vertical cable and will break if the tension in them exceeds 

100 N. Does the traffic light remain hanging in this situation, or will one 

of the cables break? 

 

 

 

Solution: 

We construct a diagram of the forces acting  

on the traffic light, shown in the figure b, and a free-body  

diagram for the knot that holds the three cables together, shown in the 

figure c. This knot is a convenient object to choose because all the forces 

of interest act along lines passing through the knot. 

 

 Apply equation (5.1) for the traffic light in  

the y direction: 

 

 

 Choose the coordinate axes as shown in the figure c and resolve the 

forces acting on the knot into their components: 
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Apply the particle in equilibrium model to the knot: 

 

 

Substitute this value for T2 into equation (2): 

 

Both values are less than 100 N, so the cables will not break. 

 

Example (5.2): 

A car of mass m is on an icy driveway inclined at an angle u as in the 

figure a. 

(A) Find the acceleration of the car, assuming the driveway is 

frictionless. 

Solution: 
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Note that the acceleration component ax is independent of the mass of the 

car! It depends only on the angle of inclination and on g. 

 

(B) Suppose the car is released from rest at the top of the incline and 

the distance from the car’s front bumper to the bottom of the 

incline is d. How long does it take the front bumper to reach the 

bottom of the hill, and what is the car’s speed as it arrives there? 

Solution: 

Apply equation:                 xf  = xi       
 

 
 ax t

2
 

xf  = d    ,   xi = 0  and          then       d= 
 

 
 ax t

2
 

Solve for  t :   

 

 

Use equation:               
     

 +2ax (xf  - xi )  

 with                 , to find the final velocity of the car: 

   
   2 ax d 

 

 

Example (5.3): 

When two objects of unequal mass are 

 hung vertically over a frictionless pulley of negligible 

 mass as in the figure a,  the arrangement is called an 

 Atwood machine.  

The device is sometimes used in the lab. to determine the value of g. 

Determine the magnitude of the acceleration of the two objects and the 

tension in the lightweight cord. 
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Solution: 

The objects in the Atwood machine are subject to the gravitational force 

as well as to the forces exerted by the strings connected to them. 

Two forces act on each object: the upward force   ⃗⃗⃗ ⃗  (tension) exerted by 

the string and the downward gravitational force. 

 

Apply Newton’s second law to object 1: 

 

 

 

Apply Newton’s second law to object 2: 

 

 

Solve for the acceleration:     

 

To find the tension T of the string:      

 

Example (5.4): 

A ball of mass m1 and a block of mass m2 are attached by a 

lightweight cord that passes over a frictionless pulley of negligible mass 

as in the figure a. The block lies on a frictionless incline of angle  .  

Find the magnitude of the acceleration of the two objects and the tension 

in the cord. 

Solution: 

If m2 moves down the incline, then m1 moves 

upward. Because the objects are connected by a 

cord (which we assume does not stretch), their 
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accelerations have the same magnitude. 

 Apply Newton’s second law in component form to the ball, 

choosing the upward direction as positive: 

 

 

 

For the ball to accelerate upward, it is necessary that T > m1g. 

 

Apply Newton’s second law in component form to  

 

the block: 

 

 
 

We replaced (ax' ) with (a ) because the two objects have accelerations of 

equal magnitude  (a). 

 

Solve equation (2) for T :   

 

Substitute this expression for T into equation (3): 

 

Solve for (a):  

 

Substitute this expression for (a) into equation (5) to find T : 
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5.5 Forces of Friction 

When an object is in motion either on a surface or in a viscous 

medium such as air or water, there is resistance to the motion because the 

object interacts with its surroundings. We call such resistance                   

a force of friction. 

 If we apply an external horizontal force   ⃗⃗⃗ to a block for example, 

acting to the right, the block can remains stationary when   ⃗⃗⃗ is 

small. The force on the block that counteracts   ⃗⃗⃗ and keeps it from 

moving acts toward the left and is called the force of static 

friction   ⃗⃗s . As long as the block is not moving, fs = F. Therefore, if 

  ⃗⃗⃗ is increased,   ⃗⃗s also increases. Likewise, if   ⃗⃗⃗ decreases,   ⃗⃗s also 

decreases. 

 We call the friction force for an object in motion the force of 

kinetic friction   ⃗⃗k . 

 The magnitude of the force of static friction between any two 

surfaces in contact can have the values:  

             (5.5) 

 Where the dimensionless constant (µs) is called the coefficient of 

static friction and (n) is the magnitude of the normal force exerted by 

one surface on the other.  

 The equality in equation (5.5) holds when the surfaces are on the 

verge of slipping, that is, when fs = fs,max = µsn. This situation is 

called impending motion.  

 The inequality holds when the surfaces are not on the verge of 

slipping. 

 The magnitude of the force of kinetic friction acting between two 

surfaces is:                                               
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                                                                   (5.6) 

              Where (µk ) is the coefficient of kinetic friction. 

 The values of µk and µs depend on the nature of the surfaces.  

 µk is generally less than µs.  

Typical values range from around (0.03 to 1). 

 The direction of the friction force on an object is parallel to the 

surface with which the object is in contact and opposite to the 

actual motion (kinetic friction) or the impending motion (static 

friction) of the object relative to the surface. 

Example (5.5): 

A block is placed on a rough surface inclined relative to the 

horizontal as shown in the figure. The incline angle is increased until the 

block starts to move. Show that you can obtain µs by measuring the 

critical angle   at which this slipping just 

occurs? 

Solution: 

 

Substitute ( mg = n/cos  ) from equation (2) into 

equation (1): 

 

When the incline angle is increased until the block is on the verge of 

slipping, the force of static friction has reached its maximum value µs n.  

µs n = n tan    

µs = tan   
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Example (5.6): 

A block of mass m2 on a rough, horizontal surface is connected to a 

ball of mass m1 by a lightweight cord over a lightweight, frictionless 

pulley as shown in the figure a. A force of magnitude F at an angle   

with the horizontal is applied to the block as shown, and the block slides 

to the right. The coefficient of kinetic friction between the block and 

surface is µk. 

 Determine the magnitude of the acceleration of the two objects.  

Solution: 

 

 

Solve equation (2) for n:  

 

Substitute ( n ) into fk = µkn :  

  

Substitute equation (4) and the value of (T ) from equation (3) into 

equation (1):   

 

  

Solve for a:       
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Chapter 6 

(Uniform Circular Motion) 

6.1  Particle in Uniform Circular Motion 

 
If a car is moving on a circular path with constant speed v, we call it 

uniform circular motion. Even though an object moves at a constant 

speed in a circular path, it still has acceleration. To see why, consider the 

defining equation for acceleration,  

  ⃗⃗⃗ ⃗ = 
  ⃗⃗

  
  

Notice that the acceleration depends on the change in the velocity. 

Because velocity is a vector quantity, acceleration can occur in two ways: 

1- By a change in the magnitude of the velocity. 

2- By a change in the direction of the velocity.  

The constant-magnitude velocity vector is always tangent to the 

path of the object and perpendicular to the radius of the circular path.   

For uniform circular motion, the acceleration vector can only have a 

component perpendicular to the path, which is toward the center of the 

circle. 

 
 

 Let us now find the magnitude of the acceleration of the particle. 

The angle Δ  between the two position vectors in the figure (b) is the 

same as the angle between the velocities vectors in figure (c) because the 
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velocity vector   ⃗⃗⃗ is always perpendicular to the position vector   ⃗⃗⃗ . 

Therefore, the two triangles are similar; (Two triangles are similar if the 

angle between any two sides is the same for both triangles and if the ratio 

of the lengths of these sides is the same). We can now write a relationship 

between the lengths of the sides for the two triangles. 

 

Where  vi = vf = v and r = ri = rf 

The magnitude of the average acceleration over the time interval for the 

particle to move from A to B: 

 

As A and B approach each other, Δt approaches zero, |   ⃗⃗⃗| approaches 

the distance traveled by the particle along the circular path, and the ratio 

|   ⃗⃗⃗|

  
  approaches the speed v. In addition, the average acceleration 

becomes the instantaneous acceleration at point A. Hence, in the limit 

Δt    , the magnitude of the acceleration is: 

                                          Centripetal acceleration    (6.1)  

       

This acceleration is called a centripetal acceleration (centripetal means 

center-seeking) because   ⃗⃗⃗c is directed toward the center of the circle. 

Furthermore,   ⃗⃗⃗c   is always perpendicular to   ⃗⃗⃗.  

In many situations, it is convenient to describe the motion of a particle 

moving with constant speed in a circle of radius r in terms of the period 

T, which is defined as (the time interval required for one complete 

revolution of the particle). In the time interval T, the particle moves a 

distance of 2πr, which is equal to the circumference of the particle’s 

circular path. Therefore, because its speed is equal to the circumference 

of the circular path divided by the period or v = 2πr/T, it follows that: 
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                 Period of circular motion     (6.2) 

Example (6.1): 

What is the centripetal acceleration of the Earth as it moves in its orbit 

around the Sun? 

Solution: 

Combine equations (6.1) and (6.2): 

 

The period of the Earth’s orbit, which we know is one year, and the 

radius of the Earth’s orbit around the Sun, which is (1.496 × 10
11

 m). 

 

 

 Let us now consider a ball of mass m that is tied to a string of 

length r and moves at constant speed in a horizontal circular path: 

According to Newton’s first law, the ball would move in a straight line if 

there were no force on it; the string, however, prevents motion along a 

straight line by exerting on the ball a radial force   ⃗⃗⃗
r that makes it follow 

the circular path. This force is directed along the string toward the center 

of the circle. If Newton’s second law is applied along the radial direction, 

the net force causing the centripetal acceleration can be related to the 

acceleration as follows: 

                                                                    

Centripetal force     (6.3) 

This force causing a centripetal acceleration acts toward the center of the 

circular path and causes a change in the direction of the velocity vector. If 
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that force should vanish, the object would no longer move in its circular 

path; instead, it would move along a straight-line path tangent to the 

circle as shown in the figure. 

The magnitude of the centripetal force required 

to keep on the object in a circular path depends  

on the mass of the object and its acceleration. 

 

6.2 Tangential and Radial Acceleration 

Let us consider a more general motion:  

A particle moves to the right along a curved path, and its velocity changes 

both in direction and in magnitude. In this situation, the velocity vector is 

always tangent to the path; the acceleration vector   ⃗⃗⃗. The direction of the 

total acceleration vector   ⃗⃗⃗ changes from point to point. At any instant, 

this vector can be resolved into two components as shown in the figure, 

based on an origin at the center of the dashed circle corresponding to that 

instant: a radial component ar along the radius of the circle and a 

tangential component at perpendicular to this radius. The total 

acceleration vector   ⃗⃗⃗can be written as the vector sum of the component 

vectors: 

  ⃗⃗⃗    ⃗⃗⃗r +   ⃗⃗⃗t    Total acceleration    (6.4) 

 

 

Curved path 
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The tangential acceleration component causes a change in the speed v of 

the particle. This component is parallel to the instantaneous velocity, and 

its magnitude is given by: 

      at = |
  

  
|                       Tangential acceleration                               (6.5) 

The radial acceleration component arises from a change in direction of 

the velocity vector and is given by: 

ar = - ac = - 
  

 
           Radial acceleration                    (6.6) 

Where ( r ) is the radius of curvature of the path. The negative sign in 

equation (6.6) indicates that the direction of the centripetal acceleration is 

toward the center of the circle representing the radius of curvature. The 

direction is opposite that of the radial unit vector   ⃗⃗⃗, which always points 

away from the origin at the center of the circle. 

Because   ⃗⃗⃗r and   ⃗⃗⃗t are perpendicular component vectors of   ⃗⃗⃗,                  

it follows that the magnitude of   ⃗⃗⃗ is:             a=√  
    

 .  

At a given speed, ar is large when the radius of curvature (r ) is small (as 

at points A and B) in the figure, and small when (r ) is large (as at point 

C). The direction of   ⃗⃗⃗t is either in the same direction as   ⃗⃗⃗ (if v is 

increasing) or opposite   ⃗⃗⃗ (if v is decreasing, as at point B).  

 In uniform circular motion, where v is constant, at = 0 and the 

acceleration is always completely radial. In other words, uniform 

circular motion is a special case of motion along a general curved path. 

 

Example (6.2): 

A car exhibits a constant acceleration of 0.3 m/s
2
 parallel to the 

roadway. The car passes over a rise in the roadway such that the top of 

the rise is shaped like a circle of radius 500 m. At the moment the car is at 

the top of the rise, its velocity vector is horizontal and has a magnitude of 
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(6 m/s). What are the magnitude and direction of the total acceleration 

vector for the car at this instant? 

Solution: 

Because the accelerating car is moving along a curved path, the car has 

both tangential and radial acceleration. 

The radial acceleration vector is directed 

 straight downward, and the tangential  

acceleration vector has magnitude (0.3m/s
2
) 

and is  horizontal. 

The radial acceleration: 

ar =  - 
  

 
 = - 

    

   
 = - 0.072 m/s

2
 

The total acceleration is:           a=√  
    

  = √                 

                                                     = 0.309 m/s
2
 

The direction of the total acceleration vector is: 

           

  
 =              

     
 = - 13.5  

Example (6.3): 

A small ball of mass m is suspended from a string of length L. The ball 

revolves with constant speed v in a horizontal circle of radius r as shown 

in the figure. Find an expression for v. 

Solution: 

Let   represents the angle between the string 

and the vertical. 

The force    ⃗⃗⃗⃗⃗exerted by the string on the ball is 

resolved into a vertical component 

 (T cos    and a horizontal component  

(T sin    acting toward the center of the circular path.  
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Apply the particle in equilibrium model in the vertical direction:  

 

 

Use equation (6.3) in the horizontal direction:  

 

Divide equation (2) by equation (1) and use      sin   /cos     tan  : 

 
Solve for v: 

 

Since (r = L sin  )                

Notice that the speed is independent of the mass of the ball. 

Example (6.4): 

A car moving on a flat, horizontal road negotiates a curve as shown 

in the figure a. If the radius of the curve is 35 m and the coefficient of 

static friction between the tires and dry pavement is 0.523, find the 

maximum speed the car can have and still make 

the turn successfully. 

Solution: 

Imagine that the curved roadway is part of a large 

circle so that the car is moving in a circular path.  

The force that enables the car to remain in its circular path is the force of 

static friction. (It is static because no slipping occurs at the point of 

contact between road and tires). The maximum speed vmax the car can 

have around the curve is the speed at which it is on the verge of skidding 
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outward. At this point, the friction force has its maximum value 

fs,max=µsn.  

 

 

Solve equation (1) for the maximum speed and substitute for n: 

 
Notice that the maximum speed does not depend on the mass of the car. 

 

Example (6.5): 

 

Child of mass m rides on a wheel as shown in the figure a. The 

child moves in a vertical circle of radius (10 m) at a constant speed of     

(3 m/s).  

(A) Determine the force exerted by the seat on the child at the 

bottom of the ride.  

Solution: 

We draw a diagram of forces acting on the child at  

the bottom of the ride as shown in the figure b. The only 

forces acting on him are the downward gravitational force  

  ⃗⃗⃗
g= m  ⃗⃗⃗⃗  and the upward force   ⃗⃗⃗ ⃗bot exerted by the seat.  

The net upward force on the child that provides his  

centripetal acceleration has a magnitude (  ⃗⃗bot     mg ). 

Apply Newton’s second law to the child  

in the radial direction: 
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Hence, the magnitude of the force   ⃗⃗⃗ ⃗ bot exerted by the seat on the child is 

greater than the weight of the child by a factor of (1.09). 

(B) Determine the force exerted by the seat on the child at the top of 

the ride. 

Solution: 

The diagram of forces acting on the child at the top of the ride is shown in 

the figure c. The net downward force that provides the centripetal 

acceleration has a magnitude (mg       ⃗⃗top ).  

Apply Newton’s second law to the child at this position: 

 

In this case, the magnitude of the force exerted by the seat on the child is 

less than his true weight by a factor of 0.908, and the child feels lighter. 
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6.3  Gravitation 

 Newton’s Law of Universal Gravitation: 

Newton’s law of universal gravitation states that: 

(Every particle in the Universe attracts every other particle with a force 

that is directly proportional to the product of their masses and inversely 

proportional to the square of the distance between them). 

  

Gravitational force             (6.7)  

 

Where G is a constant, called the universal gravitational constant: 

G = 6.67 × 10
-11

  N.m
2
/ kg

2
 

 

 Free-Fall Acceleration and the Gravitational Force 

The magnitude of the gravitational force on an object near the 

Earth’s surface is called the weight of the object: 

 

 

 

(6.8) 

 

Where ME is the Earth’s mass and RE is its radius.  

According to equation (6.8), we see that the free - fall acceleration (g) 

near the Earth's surface is constant since the other quantities in this 

equation are also constants. 

Example (6.6): 

The surface of the Earth is approximately (6400 km) from its center and 

its mass is (6 × 10
24

 kg), what is the acceleration due to gravity (g) near 

the surface? 
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Solution: 

Apply equation (6.8):  g = 
                     

            
 

 g = 9.8 m/s
2
 

 

 Now consider an object of mass m located a distance h above the 

Earth’s surface or a distance r from the Earth’s center,  

Where ( r = RE + h). The magnitude of the gravitational force 

acting on this object is: 

 

 

 

The magnitude of the gravitational force acting on the object at this 

position is also Fg = mg, where g is the value of the free-fall acceleration 

at the altitude h. Substituting this expression for Fg into the last equation 

shows that g is given by: 

  

                          Variation of g with altitude                 (6.9) 

 

Therefore, it follows that g decreases with increasing altitude. 
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Chapter 7 

(Work and Energy)  

7.1 Work Done by a Constant Force 

The work W done on a system by exerting a constant force on the 

system is (the product of the magnitude F of the force, the magnitude Δr 

of the displacement of the point of application of the force, and cos  , 

where   is the angle between the force and displacement vectors): 

 

     Work done by a constant force          (7.1) 

Work is a scalar, even though it is defined in terms of two vectors;           

a force   ⃗⃗⃗ and a displacement Δ  ⃗⃗⃗. 

 

 

 A force does no work on an object if the force does not move 

through a displacement, that is if Δr = 0 then W=0. 

 If the work done by a force on a moving object is zero when the 

force applied is perpendicular to the displacement of its point of 

application. That is, if  = 90 , then W = 0 because cos 90 =0. 

 The sign of the work depends on the direction of   ⃗⃗⃗ relative to Δ  ⃗⃗⃗. 

 The work done by the applied force on a system is positive when the 

projection of   ⃗⃗⃗ onto Δ  ⃗⃗⃗ is in the same direction as the displacement. For 

example, when an object is lifted, the work done by the applied force on 

the object is positive because the direction of that force is upward, in the 

same direction as the displacement of its point of application. 

When the projection of   ⃗⃗⃗ onto Δ  ⃗⃗⃗ is in the direction opposite the 

displacement, W is negative. For example, as an object is lifted, the work 

done by the gravitational force on the object is negative. 
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If an applied force   ⃗⃗⃗ is in the same direction as the displacement Δ  ⃗⃗⃗ , 

then   = 0 and cos 0 = 1. In this case, equation (7.1) gives: 

W = F Δr 

The units of work are those of force multiplied by those of length. 

Therefore, the SI unit of work is the newton . meter (N . m = kg . m
2
/s

2
). 

This combination of units is given a name, the joule (J). 

 Work is an energy transfer. If W is the work done on a system and 

W is positive, energy is transferred to the system; if W is negative, 

energy is transferred from the system. 

7.2 Work Done by a Varying Force 

Consider a particle being displaced along the x - axis under the 

action of a force that varies with position. The particle is displaced in the 

direction of increasing x from x = xi to x = xf . In such a situation, we 

cannot use (W = F Δr cos  ) to calculate the work done by the force 

because this relationship applies only when   ⃗⃗⃗ is constant in magnitude 

and direction. If, however, we imagine that the particle undergoes a very 

small displacement Δx, the x component Fx of the force is approximately 

constant over this small interval; for this small displacement, we can 

approximate the work done on the particle by the force as: 

W ≈ Fx Δx 

Which is the area of the shaded rectangle in the figure a. If we imagine 

the Fx versus x curve divided into a large number of such intervals, the 

total work done for the displacement from xi to xf is approximately equal 

to the sum of a large number of such terms: 
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Therefore, we can express the work done by Fx on the particle as it moves 

from xi to xf as: 

                                                                    (7.2) 

 

This equation reduces to equation (7.1) when the component Fx = F cos   

remains constant. 

 

 

Work done by a spring 

A model of a common physical system on which the force varies 

with position is shown in the figure.  

The system is a block on a frictionless, horizontal surface and 

connected to a spring. For many springs, if the spring is either stretched 

or compressed a small distance from its unstretched (equilibrium) 

configuration, it exerts on the block a force that can be mathematically 

modeled as: 

 

                            Spring force  (Hooke’s law)                    (7.3) 

 

Where x is the position of the block relative to its equilibrium (x = 0) 

position and k is a positive constant called the force constant or the 

spring constant of the spring. 
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 The force required to stretch or compress a spring is proportional to 

the amount of stretch or compression x. This force law for springs 

is known as Hooke’s law.  

The value of k is a measure of the stiffness of the spring. Stiff springs 

have large k values, and soft springs have small k values. The units of k 

are N/m.  

 The negative sign in equations (7.3) signifies that the force exerted 

by the spring is always directed opposite the displacement from 

equilibrium.  
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 When x > 0 as in the (figure a) so that the block is to the right of 

the equilibrium position, the spring force is directed to the left, in 

the negative x direction. When x < 0 as in the (figure c), the block 

is to the left of equilibrium and the spring force is directed to the 

right, in the positive x direction. When x = 0 as in the (figure b), the 

spring is unstretched and Fs = 0. Because the spring force always 

acts toward the equilibrium position (x = 0), it is sometimes called 

a restoring force. 

 The work Ws done by the spring force on the block as the block 

moves from xi = - xmax to xf = 0: 

                           Ws =             (7.4) 

The work done by the spring force is positive because the force is in the 

same direction as its displacement (both are to the right). 

 If the block undergoes a displacement from x = xi to x = xf , the 

work done by the spring force on the block is: 

  

                                   Work done by a spring   (7.5) 

We see that the work done by the spring force is zero for any motion that 

ends where it began (xi = xf). 

Example (7.1): 

A spring is hung vertically, and an object of mass m is attached to its 

lower end. The spring stretches a distance d from its equilibrium position. 

(A) If a spring is stretched 2 cm by a suspended object having a 

mass of 0.55 kg, what is the force constant of the spring? 

(B) How much work is done by the spring on the object as it 

stretches through this distance? 

Solution: 

 (A) Because the object is in equilibrium, the net force on it is zero and 

the upward spring force balances the downward gravitational force. 
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Apply Hooke’s law to give Fs = kd and solve for k: 

 

 

( B) To find the work done by the spring on the object: 

 

 
 

 

7.3 Kinetic Energy and the Work–Kinetic Energy Theorem 

 

Consider a system consisting of a single object. The figure shows a 

block of mass m moving through a displacement directed to the right 

under the action of a net force   ⃗⃗ , also directed to the right. We know 

from Newton’s second law that the block moves with an acceleration   ⃗⃗⃗ . 

If the block and (therefore the force) moves through a displacement 

 the net work done on the block by the external net 

force    ⃗⃗ is:  

                         (7.6) 

 

Using Newton’s second law, we substitute for 

 the magnitude of the net force    ⃗⃗    . 

 

 

 

                      (7.7) 

Where vi is the speed of the block when it is at x = xi and vf is its speed at 

xf . 
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 The quantity ( 
 

 
 mv

2
) represents the energy associated with the 

motion of the particle and it is called (Kinetic energy). 

    

  Kinetic energy                  (7.8) 

 

 Kinetic energy is a scalar quantity and has the same units as work. 

 Equation 7.7 states that the work done on a particle by a net force   

 ⃗⃗ acting on it equals the change in kinetic energy of the particle. It 

is often convenient to write equation 7.7 in the form: 

                                                                            (7.9) 

 

Another way to write it is                  which tells us that the final 

kinetic energy of an object is equal to its initial kinetic energy plus the 

change in energy due to the net work done on it. 

Equation 7.9 is an important result known as the 

 Work–kinetic energy theorem: (When work is done on a system and 

the only change in the system is in its speed, the net work done on the 

system equals the change in kinetic energy of the system). 

 The work–kinetic energy theorem indicates that the speed of a 

system increases if the net work done on it is positive because the 

final kinetic energy is greater than the initial kinetic energy. The 

speed decreases if the net work is negative because the final kinetic 

energy is less than the initial kinetic energy. 

Example (7.2): 

A 6.0-kg block initially at rest is pulled to the right along a 

frictionless, horizontal surface by a constant horizontal force of 12 N. 

Find the block’s speed after it has moved 3.0 m. 
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Solution:  

The normal force balances the gravitational force 

 on the block, and neither of these vertically acting 

 forces does work on the block because their points 

 of application are horizontally displaced. 

The net external force acting on the block is the horizontal 12-N force. 

Use the work–kinetic energy theorem for the block, noting that its initial 

kinetic energy is zero:  

 

 

 

 

 

Example (7.3): 

A man wishes to load a refrigerator onto a truck using a ramp at angle 

  as shown in the figure. He claims that less work would be required to 

load the truck if the length L of the ramp were increased. Is his claim 

valid?  

Solution: 

The normal force exerted by the 

 ramp on the system is directed  

at 90  to the displacement of its point of application and so does no work 

on the system. Because ΔK = 0, the work–kinetic energy theorem gives: 

 

The work done by the gravitational force equals the product of             

[the weight (mg) of the system, the distance (L) through which the 

refrigerator is displaced, and cos (  + 90 )]. Therefore, 
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Where (h = L sin    is the height of the ramp. Therefore, the man must do 

the same amount of work (mgh) on the system regardless of the length of 

the ramp. The work depends only on the height of the ramp. 

7.4  Power 

The time rate at which work is done by a force is said to be the 

power due to the force. If a force does an amount of work W in an 

amount of time Δt, the average power due to the force during that time 

interval is: 

 

The SI unit of power is joules per second (J/s), also called the watt (W)  

 

 

Another unit of power is horsepower (hp):            1 hp = 746 W 
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Chapter 8 
(Conservation of Energy) 

 
8.1 Potential Energy of a System 

  

We call the energy storage mechanism before the object is released 

potential energy. The amount of potential energy in the system is 

determined by the configuration of the system. The work represents a 

transfer of energy into the system and the system energy appears in a 

different form, which we have called potential energy. Therefore, we can 

identify the quantity (mgy) as the gravitational potential energy Ug: 

Ug = mgy    Gravitational potential energy         (8.1) 

Where (y) is the height above the ground. 

The units of gravitational potential energy are joules, the same as the 

units of work and kinetic energy. Potential energy, like work and kinetic 

energy, is a scalar quantity. 

8.2   Conservative and Non-conservative Forces 

Conservative Forces 

Conservative forces have these two equivalent properties: 

1. The work done by a conservative force on a particle moving between 

any two points is independent of the path taken by the particle. 

2. The work done by a conservative force on a particle moving through 

any closed path is zero. (A closed path is one for which the beginning 

point and the endpoint are identical.) 

The gravitational force is one example of a conservative force; the force 

that an ideal spring exerts on any object attached to the spring is another. 

Non conservative Forces 
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A force is non-conservative if it does not satisfy properties 1 and 2 for 

conservative forces. We define the sum of the kinetic and potential 

energies of a system as the mechanical energy of the system: 

Emech = K + U                  (8.2) 

Where K is the kinetic energy of the system and U is the potential energy 

in the system. 

 The force of kinetic friction is a non-conservative force. 

 

8.3 Relationship between Conservative Forces and 

Potential Energy 

 

A potential energy function U is defined as (the work done within the 

system by the conservative force equals the decrease in the potential 

energy of the system). 

The work done by the force F as the particle moves along the x axis is: 

 

                          (8.3) 

 

Where Fx is the component of   ⃗⃗⃗ in the direction of the displacement. 

We can also express equation (8,3) as: 

 

 

We can then define the potential energy function as: 

 

 The value of Ui is often taken to be zero. 
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 Therefore, the conservative force is related to the potential energy 

function through the relationship: 

 

 Relationship between Conservative Forces        
8.4) 

 and Potential Energy 

                                                                                                      

 The potential energy for a spring is: 

                                Elastic potential energy                       (8.5) 

 

The elastic potential energy of the system can be thought of as the energy 

stored in the deformed spring (one that is either compressed or stretched 

from its equilibrium position). The elastic potential energy stored in a 

spring is zero whenever the spring is undeformed (x = 0). Energy is 

stored in the spring only when the spring is either stretched or 

compressed. Because the elastic potential energy is proportional to x
2
, we 

see that Us is always positive in a deformed spring. 

 In the case of the deformed spring: 
 

 

This is corresponding to the restoring force in the spring (Hooke’s law). 

                  Fs = - k x                                    Hooke’s law   

8.4   Potential Energy Diagram 

Consider the potential energy function for a block–spring system, given 

by:  

This function is plotted versus x in the figure. The force Fs exerted by the 

spring on the block is related to Us through equation: 

                                                             (8.6) 
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This means that the x component of the force  

is  equal to the negative of the slope of the 

 Us versus x curve. 

 

 

 

8.5 Conservation of Energy 

The general statement of the principle of conservation of energy can be 

described mathematically with the conservation of energy equation as 

follows:  

                                                                (8.7) 
 

Where Esystem is the total energy of the system, including all methods of 

energy storage (kinetic, potential, and internal), and T (for transfer) is the 

amount of energy transferred across the system boundary by some 

mechanism. 

We can express the conservation of energy of the system as: 

                     

                                                               (8.8) 

 

Therefore,             Δ K + Δ U = 0 

 

            

 Or              

     (8.9) 

 

 

Example (8.1): 

A ball of mass m is dropped from a height h above the ground as shown 

in the figure. 

(A) Neglecting air resistance, determine the speed of the ball when it is at 

a height y above the ground.  

Solution: (A)   At the instant the ball is released, its kinetic energy is  
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Ki = 0 and the gravitational potential energy of the system is Ugi = mgh. 

When the ball is at a position y above the ground, its kinetic energy is  

Kf = 1/2 mvf
 2
 

and the potential energy relative to  the ground  is  

Ugf = mgy. 

Apply equation (8.9): 

 

(B): Determine the speed of the ball at y if at the instant of release it 

already has an initial upward speed vi at the initial altitude h. 

Solution: 
 

In this case, the initial energy includes kinetic energy equal to 1/2 mvi
2
. 
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Chapter 9 

(Linear Momentum and Collisions) 

9.1 Linear Momentum  

Consider an isolated system of two particles as in the figure, with 

masses m1 and m2 moving with velocities   ⃗⃗⃗1 and   ⃗⃗⃗2 at an instant of time. 

Because the system is isolated, the only force on one particle is that from 

the other particle. If a force from particle 1 (for example, a gravitational 

force) acts on particle 2, there must be a second force—equal in 

magnitude but opposite in direction—that particle 2 exerts on particle 1. 

That is, the forces on the particles form  

Newton’s third law action–reaction pair, and   ⃗⃗⃗
12 = -  ⃗⃗⃗

21.  

We can express this condition as: 

  ⃗⃗⃗
12 +  ⃗⃗⃗

21 = 0 

The interacting particles in the system have accelerations 

 corresponding to the forces on them.  

Therefore, replacing the force on each particle with m1  ⃗⃗⃗  

for the particle gives: 

m1  ⃗⃗⃗1 +m2   ⃗⃗⃗2 = 0 

Now we replace each acceleration with its definition: 

 

If the masses m1 and m2 are constant, we can bring them inside the 

derivative operation, which gives: 

 

 

                                                                        (9.1) 
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Notice that the derivative of the sum m1  ⃗⃗⃗1 + m2  ⃗⃗⃗2 with respect to time is 

zero. Consequently, this sum must be constant.  

We call the quantity m  ⃗⃗⃗ of a particle as (linear momentum). 

 The linear momentum of a particle or an object that can be 

modeled as a particle of mass m moving with a velocity   ⃗⃗⃗ is 

defined to be the product of the mass and velocity of the particle: 

  ⃗⃗⃗ ⃗ = m   ⃗⃗⃗    linear momentum                 (9.2) 

 Linear momentum is a vector quantity because it equals the 

product of a scalar quantity m and a vector quantity  ⃗⃗⃗ . Its direction 

is along   ⃗⃗⃗, and its SI unit is kg . m/s. 

 Using Newton’s second law of motion, we can relate the linear 

momentum of a particle to the resultant force acting on the particle. 

We start with Newton’s second law and substitute the definition of 

acceleration: 

 

In Newton’s second law, the mass m is assumed to be constant. 

Therefore, we can bring m inside the derivative operation to give us: 

 

                          Newton’s second law for a particle   (9.3) 

 

This equation shows that the time rate of change of the linear 

momentum of a particle is equal to the net force acting on the 

particle. 

 Using the definition of momentum, equation (9.1) can be written: 

 

Because the time derivative of the total momentum   ⃗⃗⃗ ⃗tot =   ⃗⃗⃗ ⃗1+  ⃗⃗2 is zero, 

we conclude that the total momentum must remain constant: 
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  ⃗⃗⃗ ⃗tot = constant                                       (9.4) 

or, equivalently,      ⃗⃗⃗ ⃗1i+  ⃗⃗2i =   ⃗⃗⃗ ⃗1f+  ⃗⃗2f                            (9.5) 

9.2 Impulse 

Let us assume a net force    ⃗⃗⃗ acts on a particle and this force may 

vary with time. According to Newton’s second law,    ⃗⃗⃗ = d  ⃗⃗ /dt, or 

d  ⃗⃗ =    ⃗⃗⃗ dt                 (9.6) 

We can integrate this expression to find the change in the momentum of a 

particle when the force acts over some time interval.  

If the momentum of the particle changes from  ⃗⃗i at time ti to  ⃗⃗f at time tf , 

integrating equation (9.6) gives: 

Δ ⃗⃗ =  ⃗⃗f -  ⃗⃗i = ∫    ⃗⃗⃗   
  

  
            (9.7) 

 The quantity on the right side of this equation is a vector called the 

impulse of the net force    ⃗⃗⃗ acting on a particle over the time 

interval  Δt = tf - ti :   

  ⃗⃗ = ∫    ⃗⃗⃗   
  

  
                    Impulse of a force        (9.8) 

From its definition, we see that impulse   ⃗⃗ is a vector quantity having a 

magnitude equal to the area under the force–time curve as described in 

the figure.  

 The direction of the impulse vector is the  

same as  the direction of the change  

in momentum.  

 Impulse has the dimensions of momentum. 

 Impulse is not a property of a particle; 

 it is a measure of the degree to which an external 

 force changes the particle’s momentum.  

 Combining equations (9.7) and (9.8) gives us an important 

statement known as the 
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 Impulse–momentum theorem: 

(The change in the momentum of a particle is equal to the impulse of the 

net force acting on the particle):           

Δ ⃗⃗ =   ⃗⃗   Impulse–momentum theorem for a particle         (9.9) 

This statement is equivalent to Newton’s second law. When we say that 

an impulse is given to a particle, we mean that momentum is transferred 

from an external agent to that particle. 

 Equation (9.9) is the most general statement of the principle of 

conservation of momentum and is called the conservation of 

momentum equation. The conservation of momentum equation is 

often identified as the special case of equation (9.5). 

9.3 Collisions 

Collisions in One Dimension 

The term collision represents an event during which two particles come 

close to each other and interact by means of forces. 

A collision may involve physical contact between two macroscopic 

objects as described in figure (a).  

To understand this concept, consider a collision on 

 an atomic scale as in the figure (b) such as the  

collision of a proton with an alpha particle  

(the nucleus of a helium atom). Because the particles  

 are both positively charged, they repel each other due  

to the strong electrostatic force between them at close separations and 

never come into ―physical contact.‖ 

 Collisions are categorized as being either elastic or inelastic 

depending on whether or not kinetic energy is conserved. 

 An elastic collision between two objects is one in which the total 

kinetic energy (as well as total momentum) of the system is the 
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same before and after the collision. Elastic collisions occur 

between atomic and subatomic particles. There must be no 

transformation of kinetic energy into other types of energy within 

the system. 

 An inelastic collision is one in which the total kinetic energy of 

the system is not the same before and after the collision (even 

though the momentum of the system is conserved).  

Inelastic collisions are of two types. When the objects stick together after 

they collide, as happens when a meteorite collides with the Earth, the 

collision is called perfectly inelastic. When the colliding objects do not 

stick together but some kinetic energy is transformed or transferred away, 

as in the case of a rubber ball colliding with a hard surface, the collision 

is called inelastic. 

Perfectly Inelastic Collisions 

Consider two particles of masses m1 and m2 moving with initial 

velocities  ⃗⃗1i and  ⃗⃗2i along the same straight line as shown in the figure. 

The two particles collide head-on, stick together, and then move with 

some common velocity  ⃗⃗f after the collision.   

Because the momentum of an isolated system is  

conserved in any collision, we can say that the total 

 momentum before the collision equals the total 

 momentum of the composite system after the collision: 

                                            (9.10) 

 

                                              (9.11) 

 

Elastic Collisions 

Consider two particles of masses m1 and m2 moving with initial 

velocities  ⃗⃗1i and  ⃗⃗2i along the same straight line as shown in the figure. 
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The two particles collide head-on and then leave the collision site with 

different velocities,  ⃗⃗1f and  ⃗⃗2f. In an elastic collision, both the momentum 

and kinetic energy of the system are conserved. 

 

(9.12) 

(9.13) 

 

 

(9.14) 

Let us separate the terms containing m1 and m2 in equation (9.12) 

to obtain:  

(9.15) 

 To obtain final result, we divide equation 9.14 by equation 9.15 

and obtain:                      

(9.16) 

According to equation (9.16), the relative velocity of the two particles 

before the collision, v1i - v2i, equals the negative of their relative velocity 

after the collision, - (v1f - v2f). 

Suppose the masses and initial velocities of both particles are known. 

Equations (9.12) and (9.16) can be solved for the final velocities in terms 

of the initial velocities because there are two equations and two 

unknowns:  

(9.17) 

(9.18) 

Let us consider some special cases. If m1 = m2, equations 9.17 and 9.18 

show that v1f = v2i and v2f = v1i, which means that the particles exchange 

velocities if they have equal masses. That is approximately what one 

observes in head-on billiard ball collisions: the cue ball stops and the 
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struck ball moves away from the collision with the same velocity the cue 

ball had. 

If particle 2 is initially at rest, then v2i = 0, and equations 9.17 and 9.18 

become: 

(9.19) 

 

(9.20) 

 

Example (9.1): 

A 1 800-kg car stopped at a traffic light is struck from the rear by 

 a 900-kg car. The two cars become entangled, moving along the same 

path as that of the originally moving car. If the smaller car were moving 

at 20.0 m/s before the collision, what is the velocity of the entangled cars 

after the collision? 

Solution: 

The phrase ―become entangled‖ tell us that the collision is perfectly 

inelastic. The magnitude of the total momentum of the system before the 

collision is equal to that of the smaller car because the larger car is 

initially at rest. 

Set the initial momentum of the system equal to the final momentum of 

the system:  

 

 

 

Because the final velocity is positive, the direction of the final velocity of 

the combination is the same as the velocity of the initially moving car. 

The speed of the combination is also much lower than the initial speed of 

the moving car. 
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Example (9.2): 

A block of mass m1 = 1.60 kg initially moving to the right with a speed of 

4m/s on a frictionless, horizontal track collides with a light spring 

attached to a second block of mass m2 = 2.10 kg initially moving to the 

left with a speed of 2.50 m/s as shown in the figure a. The spring constant 

is 600 N/m. 

(A) Find the velocities of the two blocks after the collision. 

Solution: 

 

 

 

 

 

Because the spring force is conservative, kinetic energy in the system of 

two blocks and the spring is not transformed  to internal energy during 

the compression  of the spring. The collision is elastic. 

Because momentum of the system is conserved, apply equation 9.12: 

 

           m1v1i + m2v2i = m1v1f + m2v2f           (1) 

 

Because the collision is elastic, apply equation 9.16: 

 

        v1i - v2i = - (v1f  – v2f )       (2) 

 

Multiply equation (2) by m1:      m1v1i – m1v2i = - m1v1f  + m1v2f        (3) 

 

Add equations (1) and (3): 

 



 
75 

(C) Determine the velocity of block 2 during the collision, at the 

instant block 1 is moving to the right with a velocity of 13m/s as 

in figure b. 

Solution: 

Apply equation 9.12:           m1v1i + m2v2i = m1v1f + m2v2f 

Solve for v2f :       

 

The negative value for v2f means that block 2 is still moving to the left. 

(D) Determine the distance the spring is compressed at that instant. 

Solution: 

Write a conservation of mechanical energy equation for the system: 

 

Ki + Ui = Kf + Uf 

 

Evaluate the energies, recognizing that two objects in the system have 

kinetic energy and that the potential energy is elastic: 

 

 

 

 

 

 

 

Collisions in Two Dimensions 

The game of billiards is a familiar example involving multiple 

collisions of objects moving on a two-dimensional surface. For such two-

dimensional collisions, we obtain two component equations 
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for conservation of momentum: 

 

 

Where the three subscripts on the velocity components in these equations 

represent, respectively, the identification of the object (1, 2), initial and 

final values (i, f ), and the velocity component (x, y). 

Let us consider a specific two-dimensional problem in which particle 1 of 

mass m1 collides with particle 2 of mass m2 initially at rest as in the 

figure. After the collision (Fig. b), particle 1 moves at an angle   with 

respect to the  horizontal and particle 2 moves at an angle   with respect 

to the horizontal. This event is called a glancing collision.  

Applying the law of conservation of momentum in component form and 

noting that the initial y component of the momentum of the two-particle 

system is zero gives:  

 

           (9.21) 

            (9.22) 

Where the minus sign in equation 9.22 is included 

 because after the collision particle 2 has 

 a y component of velocity that is downward. 

If the collision is elastic, we can also use  

equation 9.13 (conservation of kinetic energy) 

 with v2i = 0: 

        (9.23) 
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If the collision is inelastic, kinetic energy is not conserved and equation 

(9.23) does not apply. 

Example (9.3): 

A proton collides elastically with another proton that is initially at rest. 

The incoming proton has an initial speed of (3.50       ) m/s and makes 

a glancing collision with the second proton as in the figure. After the 

collision, one proton moves off at an angle   =37  to the original 

direction of motion and the second deflect at an angle   to the same axis.  

Find the final speeds of the two protons and the angle  . 

Solution: 

Both momentum and kinetic energy of the system are conserved in this 

glancing elastic collision. 

Use equation (9.21) through equation (9.23) gives:  

                                         (1) 

                                           (2) 

                                             (3) 

Rearrange equations (1) and (2): 

 

Square these two equations and add them: 

 

Since        +       =1  

                                                                            (4) 

 

Substitute equation (4) into equation (3): 

 

                                                                            (5) 
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One possible solution of equation (5) is v1f = 0, which corresponds to a 

head-on, one-dimensional collision in which the first proton stops and the 

second continues with the same speed in the same direction.                 

That is not the solution we want. 

Divide both sides of equation (5) by v1f and solve for the remaining factor 

of v1f : 

Use equation (3) to find v2f :  

 

 

Use equation (2) to find   : 

 

It is interesting that    +   = 90  . This result is not accidental. Whenever 

two objects of equal mass collide elastically in a glancing collision and 

one of them is initially at rest, their final velocities are perpendicular to 

each other. 

9.3 The Center of Mass 

We describe the overall motion of a system in terms of a special 

point called the center of mass of the system. The system can be a group 

of particles, such as a collection of atoms in a container. 

Consider a system consisting of a pair of particles that have 

different masses and are connected by a light, rigid rod as shown in the 

figure. 

The position of the center of mass of a system can be described as being 

the average position of the system’s mass. The center of mass of the 

system is located somewhere on the line joining the two particles and is 

closer to the particle having the larger mass.  
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If a single force is applied at a point on the rod 

 above the center of mass, the system rotates  

clockwise as shown in the figure (a). 

If the force is applied at a point on the rod  

below the center of mass, the system rotates  

 counterclockwise  as shown in the figure (b). 

If the force is applied at the center of mass, 

 the system moves in  the direction of the force 

  without rotating as shown in the figure (c). 

 

 

 

 

 

The center of mass of the pair of particles described in the figure 

below is located on the x axis and lies somewhere between the particles.   

Its x coordinate is given by:  

                                                      

                                            (9.24) 

 

 For example, if x1 = 0, x2 = d, and m2 = 2m1, we find that               

xCM = 2/3 d. That is, the center of mass lies closer to the more 

massive particle. If the two masses are equal, the center of mass 

lies midway between the particles. 

 We can extend this concept to a system of many particles with 

masses mi in three dimensions.  
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The x - coordinate of the center of mass of (n) particles is defined 

to be:  

      xCM (9.25) 

 

Where xi is the x coordinate of the i
th
 particle and the total mass is 

M = ∑    i 

The center of mass can be located in three dimensions by its position 

vector   ⃗⃗⃗CM . 

                (9.26) 

Where   ⃗⃗⃗i is the position vector of the i
th
 particle, defined by: 

 
 We replace the sum by an integral and (Δmi ) by the differential 

(dm):       

                        

 

                                                                                   (9.27) 

 

 We can express the vector position of the center of mass: 

 

 (9.28) 

 The center of mass of a uniform rod lies in the rod, midway 

between its ends. The center of mass of a sphere or a cube lies at its 

geometric center. 

 

Example (9.4): 

A system consists of three particles located as shown in the figure. Find 

the center of mass of the system. The masses of the particles are m1 = m2 

= 1.0 kg and m3 = 2.0 kg. 

 



 
81 

 

 

 

 

 

 

Solution: 

  

 

Example (9.5): 

(A) Show that the center of mass of a rod of mass (M) and length (L) 

lies midway between its ends, assuming the rod has a uniform 

mass per unit length. 

Solution: 

The mass per unit length (this quantity is called the linear mass density) 

can be written as λ = M/L for the uniform rod. If the rod is divided into 

elements of length dx, the mass of each element is dm = λ dx. 

Use equation (9.27) to find an expression for xCM: 
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(B) Suppose a rod is non-uniform such that its mass per unit length 

varies linearly with x according to the expression λ = αx, where α 

is a constant. Find the x coordinate of the center of mass as a 

fraction of L. 

 

Solution: In this case, we replace (dm) in equation (9.27) by (λ dx),  

where  λ = α x.  

 

 

 

 

 

 

 

Notice that the center of mass in part (B) is farther to the right than 

that in part (A). 
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Chapter 10 

(Rotational motion)  

10.1 Angular Position, Velocity, and Acceleration 

Figure (10.1) illustrates a rotating compact disc, or CD. The disc 

rotates about a fixed axis perpendicular to the plane of the figure and 

passing through the center of the disc at O. A small element of the disc 

modeled as a particle at  P is at a fixed distance ( r ) from the origin and 

rotates about it in a circle of radius r. (In fact, every element of the disc 

undergoes circular motion about O). It is convenient to represent the 

position of (P) with its polar coordinates (r, θ), where r is the distance 

from the origin to P and θ is measured counterclockwise from some 

reference line fixed in space as shown in figure (10.1a).  

In this representation, the angle θ changes in time  

  while r remains constant. As the particle moves 

along the circle from the reference line,  

which is at angle θ = 0, it moves through an arc  

of length s as in figure (10.1b).  

The arc length s is related to the angle θ through 

 the relationship:  

              s = r θ               (10.1) 

              θ = 
 

 
 

Because θ is the ratio of an arc length and the 

radius of the circle, it is a pure number. 

We give θ the artificial unit radian (rad).  

 Because the circumference of a circle is 2πr,  

it follows from equation (10.1) that:  

360  corresponds to an angle of (2πr/r) rad= 2π rad. 
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Hence, 1 rad = 360 /2π = 57.3 . 

 To convert an angle in degrees to an angle in radians, we use : 

π rad = 180  

so,         θ ( rad ) = π / 180  ( degree ) 

For example     60  = ( π / 3) rad  and 45  = ( π / 4) rad. 

 We choose a reference line on the object, such as a line connecting 

O and a chosen particle on the object.  

The angular position of the rigid object is (the angle θ between 

this reference line on the object and the fixed reference line in 

space), which is often chosen as the x - axis. 

 As the particle travels from position (A) to position (B) in a time 

interval  ∆t  as in figure (10.2), the reference line fixed to the object 

sweeps out an angle ∆θ = θf - θi. This quantity ∆θ is defined as the 

angular displacement of the rigid object: 

∆θ = θf - θi 

 

 The average angular speed (ωavg) 

(Greek letter omega) as (the ratio of  

the angular displacement of a rigid object  

to the time interval ∆t during which the 

displacement occurs): 

                    

                          

 

                                Average angular speed                           (10.2) 
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 The instantaneous angular speed ω is defined as (the limit of the 

average angular speed as ∆t approaches zero): 

 

                                  Instantaneous angular speed      (10.3) 

Angular speed has units of radians per second (rad/s), which can be 

written as (s
-1

) because radians are not dimensional. 

 We take (ω) to be positive when θ is increasing (counterclockwise 

motion in figure 10.2) and negative when θ is decreasing 

(clockwise motion in figure 10.2). 

 If the instantaneous angular speed of an object changes from ωi to 

ωf  in the time interval ∆t, the object has an angular acceleration. 

The average angular acceleration αavg (Greek letter alpha) of  a 

rotating rigid object is defined as (the ratio of the change in the 

angular speed to the time  interval ∆t  during which the change in 

the angular speed occurs): 

 

                            Average angular acceleration         (10.4) 

 

The instantaneous angular acceleration is defined as the limit of the 

average angular acceleration as ∆t approaches zero: 

 

                                  Instantaneous angular acceleration        (10.5) 

 

 Angular acceleration has units of radians per second squared 

(rad/s
2
), or simply ( s

-2
).  

 Notice that (α) is positive when a rigid object rotating 

counterclockwise is speeding up or when a rigid object rotating 

clockwise is slowing down during some time interval. 
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 It is convenient to use the right-hand rule demonstrated in figure 

(10.3) to determine the direction of   ⃗⃗⃗⃗  : 

( When the four fingers of the right hand are wrapped in the 

direction of rotation, the extended right thumb points in the 

direction of   ⃗⃗⃗⃗ ).  

 The direction of   ⃗⃗  ⃗ follows from its definition (  ⃗⃗  ⃗≡ d  ⃗⃗⃗⃗ /dt ).             

It is in the same direction as   ⃗⃗⃗⃗  if the angular speed is increasing in 

time, and it is antiparallel to   ⃗⃗⃗⃗  if the angular speed is decreasing in 

time. 

 

 

10.2 Rigid Object under Constant Angular Acceleration 

Writing equation (10.5) in the form:  (dω= αdt) and integrating from                          

ti = 0 to tf  = t gives: 

             ωf = ωi  + αt                   for constant                    (10.6) 

Where ωi is the angular speed of the rigid object at time t = 0.      

Equation (10.6) allows us to find the angular speed ωf  of the object at any 
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later time t. Substituting equation (10.6) into equation (10.3) and 

integrating once more, we obtain: 

                                                                           (10.7)                                                          

Where  i is the angular position of the rigid object at time t = 0.  

Equation (10.7) allows us to find the angular position  f of the object at 

any later time t.  

Eliminating ( t ) from equations (10.6) and (10.7) gives: 

                                                                                          

(10.8) 

This equation allows us to find the angular speed ωf  of the rigid object 

for any value of its angular position  f . 

If we eliminate ( α ) between equations (10.6) and (10.7), we obtain: 

                                                                                  (10.9) 

 

Notice that these kinematic expressions for the rigid object under constant 

angular acceleration are of the same mathematical form as those for a 

particle under constant acceleration (Chapter 2).  

They can be generated from the equations for translational motion by 

making the substitutions x   , v  ω, and a  α.  

Table (10.1) compares the kinematic equations for rotational and 

translational motion. 
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Example (10.1): 

A wheel rotates with a constant angular acceleration of (3.50 rad/s
2
). 

(A) If the angular speed of the wheel is (2 rad/s) at ti = 0, through what 

angular displacement does the wheel rotate in 2 s? 

Solution: Arrange equation (10.7) so that it expresses the angular 

displacement of the object: 

Substitute the known values to find the angular displacement at t =2 s: 

 

Δ   = (2 rad/s)(2 s) +  1/2 (3.5 rad/s
2
 ) ( 2 s )

2
 = 11 rad  

                                                               = (11 rad )( 180 /π rad) = 630  

(B): Through how many revolutions has the wheel turned during this time 

interval? 

 

( C ): What is the angular speed of the wheel at t =2 s? 

 

 

 

10.3  Angular and Translational Quantities 

Point P in figure (10.4) moves in a circle, the translational velocity 

vector   ⃗⃗⃗    is always tangent to the circular path and hence is called 

tangential velocity. The magnitude of the tangential velocity of the point 

P is by definition the tangential speed (v =ds/dt), where (s) is the distance 

traveled by this point measured along the circular path. 

 Recalling that      s =r   and noting that r is constant, we obtain: 

 

                                          Because d  /dt = ω 

 

       Then       v= r ω             (10.10)                                   Figure (10.4) 
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We can relate the angular acceleration of the rotating rigid object to the 

tangential acceleration of the point P by taking the time derivative of  v: 

 

 

                               Relation between tangential acceleration       (10.11) 

and angular acceleration 

 

We can express the centripetal acceleration at that point in terms of 

angular speed as: 

                                                                                 (10.12)  

 

The total acceleration vector at the point P is  ⃗  =  ⃗⃗⃗  t +  ⃗⃗⃗  r, where the 

magnitude of    ⃗⃗⃗  r is the centripetal acceleration ac. Because    ⃗  is a vector 

having a radial and a tangential component, the magnitude of  ⃗  at the 

point P on the rotating rigid object is: 

 

                                                              (Total Acceleration)  (10.13)  

 

Example (10.2): 

(A)  Find the angular speed of the disc in revolutions per minute when 

information is being read from the innermost first track  

(r = 23 mm) and the outermost final track (r =58 mm)? The 

constant speed of the CD player is 1.3 m/s. 

Solution: 

The angular speed that gives the required tangential 

speed at the position of the inner track: 
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The same for the outer track: 

 

(B)  The maximum playing time of a standard music disc is 74 min and 

33 s. How many revolutions does the disc make during that time? 

Solution: 

If t = 0 is the instant the disc begins rotating, with angular speed of         

57 rad/s, the final value of the time t is:  

[(74 min)(60 s/min) + 33 s] =4473 s. 

The angular displacement Δ during this time interval is: 

 

Convert this angular displacement to revolutions: 

 

 

 (C ) What is the angular acceleration of the compact disc over the 

4473 s time interval? 

Solution: 

 

 

10.4   Rotational Kinetic Energy 

Let us consider an object as a system of particles and assume it 

rotates about a fixed z- axis with an angular speed ω. Figure (10.5) shows 

the rotating object and identifies one particle on the object located at a 

distance ri from the rotation axis. If the mass of the i
th
 particle is  mi and 

its tangential speed is (vi), its kinetic energy is: 
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            (10.14) 

 

The total kinetic energy of the rotating rigid object is  

the sum of the kinetic energies of the individual particles: 

 

We can write this expression in the form: 

                                                                  (10.14)               Figure (10.5) 

Where  we have factored (ω
2
) from the sum because it is common to 

every particle. We simplify this expression by defining the quantity in 

parentheses as the moment of inertia I of the rigid object: 

 

                    Moment of inertia              (10.15) 

It has dimensions (Kg.m
2
). 

Equation (10.15)  becomes: 

                                           Rotational kinetic energy              (10.16) 

The analogy between kinetic energy ( 
 

  
mv

2
 ) associated with translational 

motion and rotational kinetic energy (
 

  
Iω

2
). The quantities I and ω in 

rotational motion are analogous to m and v in translational motion, 

respectively. 

 Moment of inertia is (a measure of the resistance of an object to 

changes in its rotational motion), just as mass is (a measure of the 

of the tendency of an object to resist changes in its translational  

Motion). 
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10.5 Calculation of Moments of Inertia 

We use the definition (I = Σi ri
2
Δmi) and take the limit of this sum as 

Δmi   0. In this limit, the sum becomes an integral over the volume of 

the object: 

Moment of inertia of a rigid object: 

 

                                                                   (10.17) 

 

It is usually easier to calculate moments of inertia in terms of the volume 

of the elements rather than their mass, and we can easily make that 

change by using: 

  
 

 
    where   is the density of the object and V is its volume. 

The mass of small element is:           dm =   dV   

Substituting this result into equation (10.17) gives: 

                                   I = ∫  r
2
 dV    

 If the object is homogeneous,    is constant. 

The density given by (    = m/V ) sometimes is referred to as (volumetric 

mass density) because it represents (mass per unit volume).  

For instance, when dealing with a sheet of uniform thickness t, we can 

define a (surface mass density) ( σ =   ), which represents (mass per unit 

area). 

Finally, when mass is distributed along a rod of uniform cross-sectional 

area A, we sometimes use (linear mass density) ( λ = M / L =   A), which 

is the (mass per unit length). 
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Table (10.2) gives the moments of inertia for a number of objects about 

specific axes. 
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Example (10.3): 

Calculate the moment of inertia of a uniform rigid rod of length L and 

mass M about an axis perpendicular to the rod and passing through its 

center of mass? 

Solution: 

 

The shaded length element dx'  in the figure has 

 a mass dm equal to the mass per unit length     

multiplied by dx'. 

Express dm in terms of dx': 

 

Substitute this expression into equation (10.17), with r
2
 = (x' )

2
 

Moment of inertia             

for thin rod 

Check this result in Table (10.2). 

 

Example (10.4): 

A uniform solid cylinder has a radius R, mass M, and length L. 

 Calculate its moment of inertia about its central axis?  

Solution: 

It is convenient to divide the cylinder into many cylindrical shells, each 

having radius r, thickness dr, and length L as shown in the figure.  

The density of the cylinder is  .  
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The volume dV of each shell is its cross-sectional area multiplied by its 

length:  

dV = L dA = L(2πr) dr 

Express dm in terms of  dr: 

        dm=ρ dV= ρ L(2πr) dr  

Substitute this expression into equation (10.17): 

 

Use the total volume  ( π R
2
 L ) of the cylinder to 

express its density: 

 

Substitute this value into the expression for Iz : 

     Moment of inertia for a cylinder 

Check this result in Table (10.2). 

Notice that the result for the moment of inertia of a cylinder does not 

depend on L, the length of the cylinder. Therefore, the moment of  

inertia of the cylinder would not be affected by changing its length. 

 

Parallel-axis theorem: 

                                             Parallel-axis theorem       (10.18)  

   

ICM : The moment of inertia about an axis that is parallel to the z - axis 

and passes through the center of mass. 

D  is the distance between the center of mass axis and an axis parallel to 

that axis. 
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Example (10.5):  

Find the moment of inertia of uniform rigid rod of mass M and length L  

about an axis perpendicular to the rod through one end (the y axis in the 

figure)? 

Solution: 

The distance between the center of mass axis 

 and the y - axis is D = L/2. 

Use the parallel-axis theorem: 

 

Check this result in Table (10.2). 

 

10.6  Torque 

When a force is exerted on a rigid object pivoted about an axis, the object 

tends to rotate about that axis.  

 (The tendency of a force to rotate an object about some axis is 

measured by a quantity called torque  ⃗  ) (Greek letter tau).   

Torque is a vector. 

Consider the wrench in the figure (10.6)  

that we wish to rotate around an axis 

 that is perpendicular to the page and 

 passes through the center of the bolt.  

The applied force    acts at an angle ϕ 

to the horizontal. 

 We define the magnitude of the torque  

associated with the force    around the axis         Figure (10.6) 

passing through O by the expression:  
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                                          (10.19) 

where r is the distance between the rotation axis and the point of 

application of     and d is the perpendicular distance from the rotation 

axis to the line of action of   .  

(The line of action of a force is an imaginary line extending out both ends 

of the vector representing the force).  The dashed line extending from the 

tail of    in figure (10.6) is part of the line of action of     . From the right 

triangle in figure (10.6) that has the wrench as its hypotenuse, we see that 

d = r sin ϕ           The quantity d is called the moment arm of    . 

 The only component of     that tends to cause rotation of the 

wrench around an axis through O is (F sin ϕ)                               

(the component perpendicular to a line drawn from the rotation 

axis to the point of application of the force).  

 The horizontal component (Fcos ϕ), because its line of action 

passes through O, has no tendency to produce rotation about an 

axis passing through O.  

 From the definition of torque, the rotating tendency increases as F 

increases and as d increases. 

 Torque has units of force times length (Newton.meter). 

 If the torque is positive, the object begins to rotate in the 

counterclockwise direction and if it is negative, the rotation is 

clockwise. 

10.7 Rigid Object under a Net Torque 

The rotational analog of Newton’s second law: (The angular 

acceleration of a rigid object rotating about a fixed axis is proportional to 

the net torque acting about that axis). 
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Consider a particle of mass m rotating in a circle of radius r under 

the influence of a tangential net force Σ   t and a radial net force Σ   r  as 

shown in figure (10.7).  

The radial net force causes the particle to move in the circular path 

with a centripetal acceleration. The tangential force provides a tangential 

acceleration   t , and  

Σ   t = m  t 

The magnitude of the net torque due to Σ   t  on the particle about 

an axis perpendicular to the page through the center of the circle is: 

        Σ τ = Σ Ft r = (mat ) r 

Because the tangential acceleration is  

related to the angular acceleration through  

the relationship :               at =  rα 

 The net torque can be expressed as: 

      Σ τ = (mrα ) r = ( mr
2
 ) α 

Since  ( mr
2
 ) is the moment of inertia of  

the particle about the z-axis passing  

through the origin, so 

                     Σ τ = I α        (10.20)                            Figure (10.7) 

That is, the net torque acting on the particle is proportional to its angular 

acceleration, and the proportionality constant is the moment of inertia. 

Notice that (Σ τ = I α) has the same mathematical form as Newton’s 

second law of motion, ( Σ F = ma). 
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Example (10.6): 

A uniform rod of length L and mass M is attached at one end to a 

frictionless pivot and is free to rotate about the pivot in the vertical plane 

as in the figure. The rod is released from rest in the horizontal position. 

What are the initial angular acceleration of the rod and the initial 

translational acceleration of its right end? 

Solution:  

When the rod released, it rotates 

 clockwise around the pivot at the left end. 

The only force contributing to the torque  

about an axis through the pivot is the gravitational force ( M   ) exerted 

on the rod. 

                 τ = Mg (L / 2 ) 

To obtain the angular acceleration of the rod: 

    

     =   
 
 = 

  

To find the initial translational acceleration of the right end of the rod: 

                           at = r α                     with  r = L 

                           at =  

 

Example (10.7): 

A wheel of radius R, mass M, and moment of inertia I is mounted on a 

frictionless, horizontal axle as in the figure. A light cord wrapped around 

the wheel supports an object of mass m. When the wheel is released, the 

object accelerates downward, the cord unwraps off the wheel, and the 

wheel rotates with an angular acceleration. Calculate the angular 

acceleration of the wheel, the translational acceleration of the object, and 

the tension in the cord? 
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Solution: 

The magnitude of the torque acting on the wheel about 

its axis of rotation is: 

                             τ = TR       

Where T is the force exerted by the cord on the rim  

of the wheel. 

Use equation (10.20):    Σ τ = I α  

              Then       α = 
   

 
 = 
  

 
      (1) 

Apply Newton’s second law to the motion of the object,  

taking the downward direction to be positive: 

                    Σ Fy = mg – T = ma  

The acceleration is:   a = 
    

 
            (2) 

Therefore, the angular acceleration (a ) of the wheel and the translational 

acceleration of the object are related by:  a = R α 

Use this fact together with equations (1) and (2): 

 

                            (3) 

 

The tension T is:                               (4) 

 

Substitute equation (4) into equation (2) and solve for a: 

 

                                  (5) 

 

Use ( a = R α ) and equation (5) to solve for a: 

 

                                                                       


