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9.5 Rotation and Vibration
of Diatomic Molecules

Up to now we have discussed the electronic states of ri-
gid molecules, where the nuclei are clamped to a fixed
position. In this section we will improve our model of
molecules and include the rotation and vibration of dia-
tomic molecules. This means, that we have to take into
account the kinetic energy of the nuclei in the Schrö-
dinger equation Ĥψ = Eψ, which has been omitted in
the foregoing sections. We then obtain the Hamiltonian
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where the first term represents the kinetic energy of the
nuclei, the second term that of the electrons, the third
represents the potential energy of nuclear repulsion, the
fourth that of the electron repulsion and the last term
the attraction between the electrons and the nuclei.

9.5.1 The Adiabatic Approximation

Because of their much larger mass, the nuclei in a mol-
ecule move much slower than electrons. This implies
that the electrons can nearly immediately adjust their
positions to the new nuclear configuration when the
nuclei move. Although the electronic wave functions
ψ(r, R) depend parametrically on the internuclear di-
stance R they are barely affected by the velocity of the
moving nuclei. The kinetic energy of the nuclear motion
Ekin = 1

2 Mv2 is small compared to that of the electrons.
We therefore write the total Hamiltonian H in (9.73) as
the sum

H = H0 + Tk

of the Hamiltonian H0 of the rigid molecule and Tk of
the kinetic energy of the nuclei. Since the latter is small
compared to the total energy of rigid molecule we can
regard Tk as a small perturbation of H . In this case the
total wave function

ψ(ri, Rk) = χ(Rk) ·Φ(ri, Rk) (9.74)

Fig. 9.41. Energy Eel
n (R) of the rigid molecule and total

energy E of the nonrigid vibrating and rotating molecule

can be written as the product of the molecular wave
function χ(Rk) (which depends on the positions Rk of
the nuclei), and the electronic wave function Φ(ri, Rk)
of the rigid molecule at arbitrary but fixed nuclear po-
sitions Rk, where the electron coordinates ri are the
variables and Rk can be regarded as a fixed parameter.
This implies that nuclear motion and electronic motion
are independent and the coupling between both is ne-
glected. The total energy E is the sum of the energy
Eel

n (R) of the rigid molecule in the nth electronic state,
which is represented by the potential curve in Fig. 9.41
and the kinetic energy (Evib + Erot) of the nuclei.

Note that the total energy is independent of R!

Inserting this product into the Schrödinger equation
(9.73) gives the two equations (see Problem 9.4)

Ĥ0Φ
el
n (r, Rk) = E(0)

n ·Φel
n (r, Rk) (9.75a)

(
T̂k + E(0)

n

)
χn,m(R) = En,mχn,m(R) . (9.75b)

The first equation describes the electronic wave func-
tion Φ of the rigid molecule in the electronic state
(n, L,Λ) and E(0)

n is the total electronic energy of this
state without the kinetic energy Tk of the nuclei.

The second equation determines the motion of the
nuclei in the potential

E(o)
n =

〈
Eel

kin

〉
+ Epot(ri , Rk) , (9.76)
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which consists of the time average of the kinetic
energy of the electrons and the total potential energy
of electrons and nuclei. The total energy

En,k = Enuc
kin + E(o)

n (9.77)

of the nonrigid molecule is the sum of the kinetic energy
of the nuclei and the total energy of the rigid molecule.
Equation (9.75b) is explicitly written as
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]
χn,m(Rk)

= En,mχn,m(Rk) . (9.78)

In the center of the mass system this translates to
[−!2

2M
∆+ E(n)

pot(R)

]
χn,m(R) = En,mχn,m(R)

(9.79)

where M = MA MB/(MA + MB) is the reduced mass of
the two nuclei and the index m gives the mth quantum
state of the nuclear movement (vibrational-rotational
state).

The important result of this equation is:

The potential energy for the nuclear motion in
the electronic state (n, L,Λ) depends only on the
nuclear distance R, not on the angles ϑ and ϕ, i. e.,
it is independent of the orientation of the mol-
ecule in space. It is spherically symmetric. The
wave functionsχ = χ(R, ϑ, ϕ), however, may still
depend on all three variables R, ϑ, and ϕ.

Because of the spherically symmetric potential
equation (9.77) is mathematically equivalent to the
Schrödinger equation of the hydrogen atom. The diffe-
rence lies only in the different radial dependence of the
potential. Analogous to the treatment in Sect. 4.3.2 we
can separate the wave functions χ(R, ϑ, ϕ) into a radial
part depending solely on R and an angular part, depen-
ding solely on the angles ϑ and ϕ. We therefore try the
product ansatz

χ(R, ϑ, ϕ) = S(R) ·Y(ϑ, ϕ) .

The radial function S(R) depends on the radial form
of the potential, while the spherical surface harmo-
nics Y(ϑ, ϕ) are solutions for all spherically symmetric
potentials, independent of their radial form.

Inserting the product (9.80) into (9.79) gives, as
has been already shown in Sect. 4.3.2, the following
equation for the radial function S(R):
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2MR2

]
S = 0 .

For the spherical surface harmonics Y(ϑ, ϕ) we obtain
the Eq. (4.88), already treated in Sect. 4.4.2:
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+ J(J +1)Y = 0 .

While the first Eq. (9.80) describes the vibration of the
diatomic molecule, (9.81) determines its rotation.

9.5.2 The Rigid Rotor

A diatomic molecule with the atomic masses MA and
MB can rotate around any axis through the center
of mass with the angular velocity ω (Fig. 9.42). Its
rotational energy is then

Erot = 1
2 Iω2 = J2/(2I) . (9.82)

Here I = MA R2
A + MB R2

B = MR2 where M = MA MB/
(MA + MB) is the moment of inertia of the molecule
with respect to the rotational axis and |J | = Iω is its
rotational angular momentum. Since the square of the
angular momentum

|J | 2 = J(J +1)h2

can take only discrete values that are determined by
the rotational quantum number J , the rotational ener-
gies of a molecule in its equilibrium position with an
internuclear distance Re are represented by a series of
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Fig. 9.42. Diatomic molecule as a rigid rotor
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discrete values

Erot = J(J +1)!2

2MR2
e

. (9.83)

The energy separation between the rotational levels J
and J +1

∆Erot = Erot(J +1)− Erot(J) = (J +1)!2

2MR2
e

(9.84)

increases linearly with J (Fig. 9.43).
This result can also be directly obtained from (9.80).

For a fixed nuclear distance R the first term in (9.80)
is zero. Therefore the second term must also be zero,
because the sum of the two terms is zero. The kinetic
energy of a rigid rotor, which does not vibrate, is Ekin =
Erot = E−Epot, where E is the total energy. The bracket
of the second term in (9.80) then becomes for R = Re
equal to (9.83).

In the spectroscopic literature, the rotational term
values F(J) = E(J)/hc are used instead of the energies.
Instead of (9.83) we write

Frot(J) = J(J +1)!2

2hcMR2
e

= Be J(J +1) (9.85)
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Fig. 9.43. (a) Energy levels of the rigid rotor (b) Separati-
ons ∆Erot = Erot(J +1)− Erot(J) (c) Schematic rotational
spectrum

with the rotational constant

Be = !
4πcMR2

e
, (9.86)

which is determined by the reduced mass M and the
equilibrium nuclear distance Re. For historical reasons
one writes Be in units of cm−1 instead of m−1.

EXAMPLES

1. The H2 molecule has a reduced mass M = 0.5MH =
8.35×10−28 kg, and the equilibrium distance Re =
0.742×10−10 m⇒ I = 4.60×10−48 kg m2. The ro-
tational energies are

Erot(J) = 1.2×10−21 J(J +1) Joule

= 7J(J +1) meV .

The rotational constant is Be = 60.80 cm−1.
2. For the HCl molecule the figures are M =

0.97 AMU = 1.61×10−27 kg, Re = 1.27×10−10 m
⇒ Erot = 2.1×10−22 J(J +1) Joule = 1.21 J(J +1)
meV, Be = 10.59 cm−1.

In Table 9.7 the equilibrium distances Re and the
rotational constants are listed for some diatomic mol-
ecules. The figures show that the rotational energies are
within the range of

Erot = (10−6−10−2) J(J +1) eV .

For a rotational angular momentum J the rotational
period becomes

Trot = 2πI/!√
J(J +1)

. (9.87)

Depending on the rotational constant Be they range from
Trot = 10−14 s to 10−10 s. For Be = 1 cm−1 one obtains
Trot = 1.6×10−11/

√
J(J +1) s. If an electro-magnetic

wave falls onto a sample of molecules it can be ab-
sorbed on rotational transitions J→ J +1 resulting in
absorption lines with frequencies

νrot(J) = [E(J +1)]− E(J)]/! (9.88a)

or, in wavenumber units cm−1,

νrot(J) = 2Be(J +1) . (9.88b)

The rotational transitions between levels J and
J +1 fall into the spectral range with frequencies
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Molecule Re/pm Be De αe ωe ωexe

H2 74.16 60.8 1.6×10−2 3.06 4401 121.3
Li2 267.3 0.673 9.9×10−6 0.007 351.4 2.6
N2 109.4 2.01 5.8×10−6 0.017 2359.0 14.3
O2 120.7 1.45 4.8×10−6 0.016 1580.0 12.0
I2 266.6 0.037 4.2×10−9 0.0001 214 0.61
H35Cl 127.4 10.59 5.3×10−4 0.31 2990 52.8
D35Cl 127.4 5.45 1.4×10−4 0.11 2145 27.2
ICl 232.1 0.114 4.0×10−8 0.0005 384 1.50
CO 112.8 1.931 6×10−6 0.017 2170 13.29
NO 115.1 1.705 0.5×10−6 0.017 1904 14.08

Table 9.7. Equilibrium di-
stances and rotational and
vibrational constants in
units of cm−1 for some
diatomic molecules

ν = 109−1013 Hz, i. e., in the Gigahertz–Terrahertz
range with wavelengths between λ= 10−5−10−1 m.
This spectral region is called the microwave range.

In Sect. 9.6.2 we will see, that only molecules with
a permanent electric dipole moment can absorb or
emit radiation on rotational transitions (except for
very weak quadrupole transitions). Therefore ho-
monuclear diatomic molecules show no rotational
absorption or emission spectra!

9.5.3 Centrifugal Distortion

A real molecule is not rigid. When it rotates, the
centrifugal force acts on the atoms and the inter-
nuclear distance widens to a value R where this force
Fc =−Mω2 R is compensated by the restoring force
Fr =−dEpot(R)/dR holding the two atoms together,
which depends on the slope of the potential energy
function Epot(R) (Fig. 9.44).

In the vicinity of the equilibrium distance Re the
potential can be approximated by a parabolic function
(see Sect. 9.4.4). This leads to a linear restoring force

Fr =−k(R− Re)R̂ . (9.89)

From the relation J2 = I2ω2 = M2 R4ω2 we obtain:

Mω2 R = J(J +1)!2

MR3

!= k(R− Re)

⇒ R = Re + J(J +1)!2

MkR3
, (9.90)

which means that the internuclear distance R is wi-
dened by the molecular rotation. Since the potential

E

ReR

rF
→

zF
→

)R(Epot

Fig. 9.44. Compensation of centrifugal and restoring force in
the nonrigid rotating molecule

energy Epot(R) is, for R > Re, larger than Epot(Re) we
have to include the additional energy ∆Epot = 1

2 k(R−
Re)

2 in the rotational energy of the nonrigid rotor. The
total energy of the nonrigid rotor is then

Erot = J(J +1)!2

2MR2
+ 1

2
k(R− Re)

2 . (9.91)

If we express R on the right side of (9.90) by Re and k
with the help of (9.89) we obtain

R = Re

(
1+ J(J +1)!2

MkR4
e

)
= Re(1+ x)

with x' 1. This allows us to expand 1/R2 into the
power series

1
R2

= 1
R2

e

[
1− 2J(J +1)!2

MkR4
e

(9.92)
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M2kR8
e
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]
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and the rotational energy becomes

Erot = J(J +1)!2

2MR2
e
− J2(J +1)2!4

2M2kR6
e

(9.93)

+ 3J3(J +1)3!6

2M3k2 R10
e

± . . . .

For a given value of the rotational quantum
number J the centrifugal widening makes the mo-
ment of inertia larger and therefore the rotational
energy smaller. This effect overcompensates for
the increase in potential energy.

Using the term-values instead of the energies, (9.94)
becomes

Frot(J) = Be J(J +1)−De J2(J +1)2

+He J3(J +1)3− . . .

(9.94)

with the rotational constants

Be = !
4πcMR2

e
, De = !3

4πckM2 R6
e

, (9.95)

He = 3!5

4πck2 M3 R10
e

.

The spectroscopic accuracy is nowadays sufficiently
high to measure even the higher order constant H .
When fitting spectroscopic data by (9.95) this constant,
therefore, has to be taken into account.

9.5.4 The Influence of the Electron Motion

Up to now we have neglected the influence of the elec-
tron motion on the rotation of molecules. In the axial
symmetric electrostatic field of the two nuclei in the
nonrotating molecule, the electrons precess around the
space-fixed molecular z-axis. The angular momentum
L(R) =Σli(R) of the electron shell, which depends on
the separation R of the nuclei, has, however, a constant
projection

〈Lz〉 =Λh (9.96a)

independent of R. For molecular states with electron
spin S += 0 in atoms with weak spin-orbit coupling the

spin S precesses independently around the z-axis with
a projection

〈Sz〉 = Msh . (9.96b)

Both projections add to the total value

Ωh = (Λ+ Ms)h . (9.96c)

In the case of strong spin-orbit coupling L and S couple
to Jel = L + S with the projection

〈
Jel

z

〉
=Ω×h

(see Sect. 9.3.3).
The total angular momentum J of the rotating mol-

ecule is now composed of the angular momentum N of
the molecular rotation and the projectionΛh orΩh. For
Ω += 0 the total angular momentum J of the molecule
is no longer perpendicular to the z-axis (Fig. 9.45).

Since the total angular momentum of a free mol-
ecule without external fields is constant in time,
the molecule rotates around the space-fixed direc-
tion of J and for Λ += 0 the rotational axis is no
longer perpendicular to the molecular z-axis.

In a simple model, the whole electron shell can be re-
garded as a rigid charge distribution that rotates around
the z-axis. The rotating molecule can then be described
as a symmetric top with two different moments of in-
ertia: 1.) The moment I1 of the electron shell rotating
around the z-axis and 2.) the moment I2 of the molecule

N
J

L

BA

R

Λh z

Λ

→
→

→

Fig. 9.45. Angular momenta of the rotating molecule
including the electronic contribution
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(nuclei and electrons) rotating around an axis perpendi-
cular to the z-axis. Because the electron masses are very
small compared with the nuclear masses, it follows that
I1' I2.

The rotational energy of this symmetric top is

Erot = J2
x

2Ix
+

J2
y

2Iy
+ J2

z

2Iz
(9.97)

with Ix = Iy = I1 += Iz = I2 .

From Fig. 9.45 the following relations can be obtained:

J2
z =Ω2!2

J2
x + J2

y = N2!2 = J2− J2
z (9.98)

=
[
J(J +1)−Ω2] !2 .

Inserting this into (9.97) gives the term values F(J) =
Erot(J)/hc of the rotational levels

F(J,Ω) = Be
[
J(J +1)−Ω2]+ AΩ2 (9.99)

with the two rotational constants

A = !
4πcI1

, Be = !
4πcI2

. (9.100)

The term AΩ2, which does not depend on J , is generally
added to the electronic energy Te of the molecular state,
since it is constant for all rotational levels of a given
electronic state with quantum numberΩ. It is therefore
also not influenced by the centrifugal distortion.

The ground states of the majority of diatomic mol-
ecules are 1Σ-states with Λ=Ω = 0. For these cases
A = 0 and (9.99) is identical to (9.94).

9.5.5 Vibrations of Diatomic Molecules

For a nonrotating molecule, the rotational quantum
number J in (9.80) is zero. The solutions S(R) of (9.80)
are then the vibrational wave functions of the diatomic
molecule. For J = 0 they solely depend on the radial
form of the potential energy Epot(R). For a parabolic
potential, the vibrating molecule is a harmonic oscilla-
tor, which has been already treated in Sect. 4.2.5. The
result obtained there was the quantization of the energy
levels.

The energy levels of the harmonic oscillator

E(v) = (v+ 1
2 )hω (9.101)

depend on the integer vibrational quantum number v =
0, 1, 2, . . . .

They are equally spaced by ∆E = !ω. The
frequency ω = √kr/M depends on the constant
kr = (d2 Epot/dR2)Re in the parabolic potential and on
the reduced mass M of the molecule. The lowest vibra-
tional level is not E = 0 but E = 1

2!ω. The solutions
of (9.80) with a parabolic potential are the vibrational
eigenfunctions

S(R) = ψvib(R, v) = e−πMω/h R · Hv(R) (9.102)

where the functions Hv(R) are the Hermitian polyno-
mials. Some of these vibrational eigenfunctions of the
harmonic oscillator are compiled in Table 4.1 and are
illustrated in Fig. 4.20.

Although the real potential of a diatomic molecule
can be well approximated by a parabolic potential in the
vicinity of the potential minimum at R = Re, it deviates
more and more for larger |R− Re| (see Fig. 9.38). This
figure also illustrates that the Morse potential is a much
better approximation. Inserting the Morse potential

Epot(R) = ED
[
1− e−a(R−Re)

]2
(9.103)

into the radial part (9.80) of the Schrödinger equation
allows its exact analytical solution (see Problem 9.5).
The energy eigenvalues are now:

Evib(v) = !ω0

(
v+ 1

2

)
− !

2ω2
0

4ED

(
v+ 1

2

)2

(9.104)

with energy separations

∆E(v) = Evib(v+1)− Evib(v) (9.105a)

= !ω
[

1− !ω
2ED

(v+1)

]
,

where ED is the dissociation energy of the rigid mol-
ecule. The vibrational levels are no longer equidistant
but separations decrease with increasing vibrational
quantum number v, in accordance with experimental
observations.

The term-values Tv = Ev/hc are

Tvib(v) = ωe(v+ 1
2 )−ωexe(v+ 1

2 ) (9.105b)

with the vibrational constants

ωe = ω0

2πc
, ωexe = !ω2

0

8πcED
= ω2

e
hc

4ED
.

(9.105c)
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The vibrational frequency

ω0 = a
√

2ED/M (9.106)

corresponds to that of a classical oscillator with the
restoring force constant kr = 2a2 ED. From measure-
ments of kr (for instance from the centrifugal distortion
of rotational levels) and the dissociation energy ED the
constant a in the Morse potential can be determined.

With the more general expansion of the potential

Epot(R) =
∑

n

1
n!

(
∂n Epot

∂Rn

)

Re

(R− Re)
n (9.107)

the Schrödinger equation can only be solved numeri-
cally. We will, however, see in Sect. 9.5.7 that the real
potential can be very accurately determined from the
measured term values of the rotational and vibrational
levels.

Note:

• The distance between vibrational levels decreases
with increasing v, but stays finite up to the disso-
ciation energy. This means that only a finite number
of vibrational levels fit into the potential well of
a bound molecular state. This is in contrast to the
infinite number of electronic states in an atom such
as the H atom. Here the distance between Ryd-
berg levels converges with n→∞ towards zero
(see (3.88)). This different behavior stems from the
different radial dependence of the potentials in the
two cases.

• One has to distinguish between the experimen-
tally determined dissociation energy Eexp

D , where
the molecule is dissociated from its lowest vibration
level, and the binding energy EB of the potential
well, which is measured from the minimum of the
potential (Fig. 9.41). The difference is

Eexp
D = EB− 1

2!ω .

9.5.6 Interaction Between Rotation
and Vibration

Up to now we have looked at the rotation of a non-
vibrating molecule and the vibration of a nonrotating
molecule. Of course a real molecule can simul-
taneously rotate and vibrate. Since the vibrational

R(t)

S

eR

Fig. 9.46. Vibrating rotor

frequency is higher than the rotational frequency by
one to two orders of magnitude, the molecule un-
dergoes many vibrations (typically 5−100) during
one rotational period (Fig. 9.46). This means that the
nuclear distance changes periodically during one full
rotation.

EXAMPLES

1. For the H2 molecule, ωe = 1.3×1014 s−1⇒ Tvib =
4.8×10−14 s, while Trot = 2.7×10−13√J(J +1) s.

2. For the Na molecule, ωe = 4.5×1012 s−1⇒ Tvib =
1.4×10−12 s, while Trot = 1.1×10−10√J(J +1) s.

Since the total angular momentum J = I ·ω of
a freely rotating molecule has to be constant in time,
but the moment of inertia I periodically changes,
the rotational frequency ω has to change accor-
dingly with a period Tvib. Therefore the rotational
energy

Erot = J(J +1)!2

2m R2

also varies periodically with a period Tvib.

Because the total energy E = Erot + Evib + Epot
has to be constant, there is a periodic exchange of
rotational, vibrational and potential energy in the
vibrating rotor (Fig. 9.47).

The rotational energy, considered separately, is
the time average over a vibrational period. This time
average can be calculated as follows:

The probability to find the nuclei within the interval
dR around the distance R is

P(R)dR = |ψvib(R)| 2 dR .
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rotE

vibE

potE

t

E

Fig. 9.47. Exchange between rotational, vibrational and
potential energy during a vibrational period

The quantum mechanical expectation values of R and
1/R2 are then

〈R〉 =
∫
ψ∗vib Rψvib dR , and (9.108)

〈
1/R2〉 =

∫
ψ∗vib

1
R2
ψvib dR .

This gives the mean rotational energy, averaged over
one vibrational period

〈Erot(v)〉 =
J(J +1)!2

2M

∫
ψ∗vib(v)

1
R2
ψvib(v) dR .

(9.109)

Note:

Even for a harmonic potential the expectation value of
1/R2 depends on the vibrational quantum number v. It
increases with v although 〈R〉 is independent of v and
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1
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5
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Fig. 9.48. Mean internuclear distance 〈R〉
and rotational constant Bv ∝ 〈1/R2〉 for the
harmonic (a)and anharmonic (b)potential

always equal to Re (Fig. 9.48). Therefore, the rotatio-
nal constant Bv of the rotating harmonic oscillator also
depends on v. For the more realistic anharmonic poten-
tial, both 〈R〉 as well as 〈1/R2〉 change with v. While
〈R〉 increases 〈1/R2〉 decreases with increasing v.

In order to express the rotational term values by
a rotational constant similar to (9.86) or (9.95) we
introduce, instead of Be, the rotational constant

Bv = !
4πcM

∫
ψ∗vib(v, R)

1
R2ψvib(v, R)dR

(9.110a)

averaged over the vibrational motion. It depends on the
vibrational quantum number v.

For a Morse potential we then obtain

Bv = Be−αe(v+ 1
2 ) (9.111a)

where αe' Be. In a similar way an average centrifugal
constant

Dv = !3

4πckM2

∫
ψ∗vib

1
R6
ψvib dR (9.110b)

can be defined, which is related to De by

Dv = De−βe(v+ 1
2 ) with βe' De . (9.111b)

For a general potential, higher order constants have to
be introduced and one writes

Bv = βe−αe(v+ 1
2 )+γe(v+ 1

2 )2 + . . . (9.112a)

Dv = De +βe(v+ 1
2 )+ δe(v+ 1

2 )2 + . . . . (9.112b)
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The term value of a rotational-vibrational level can then
be expressed as the power series

T(v, J) = Te +
[
ωe(v+ 1

2 )−ωexe(v+ 1
2 )2

+ ωe ye(v+ 1
2 )3 +ωeze(v+ 1

2 )4 + . . .
]

+
[
Bv J(J +1)−Dv J2(J +1)2

+ Hv J3(J +1)3∓ . . .
]

. (9.113a)

For a Morse potential this series is reduced to

T Morse(v, J) = Te +ωe(v+ 1
2 ) (9.113b)

−ωexe(v+ 1
2 )2 + Bv J(J +1)

−Dv J2(J +1)2

where only five constants describe the energies of all
levels (v, J) up to energies where the Morse potential
is still a good approximation.

9.5.7 The Dunham Expansion

In order to also reproduce the rotational-vibrational
term values T(v, J) of a rotating molecule for a more
general potential (9.107)

Epot(R) =
∑

n

an(R− Re)
n , (9.114)

with

an = 1
n!

(
∂n Epot

∂Rn

)

Re

.

Dunham introduced the expansion

T(v, J) =
∑

i

∑

k

Yik(v+ 1
2 )i [

J · (J +1)−Λ2]k

(9.115)

where the Dunham coefficients Yik are fit parameters
chosen such that the term values T(v, J) best repro-
duce the measured term values of rotational levels in
vibrational states of the molecule.

With (9.115) the energies of all vibrational-
rotational levels of a molecule can be described by
a set of molecular constants. These constants are re-
lated to the coefficients in the expansion (9.113a) by
the relations

Y10 ≈ ωe , Y20 ≈−ωexe , Y30 ≈ ωe ye

Y01 ≈ Be , Y02 ≈ De , Y03 ≈ He

Y11 ≈−αe , Y12 ≈ βe , Y21 ≈ γe

(9.116)

and also to the coefficients an in the general potential
expansion (9.114) [9.10].

9.5.8 Rotational Barrier

The effective potential for a rotating molecule (see
(9.80))

Eeff
pot(R) = E(v)

pot(R)+ J(J +1)!2

2MR2
(9.117)

includes, besides the potential Epot(R) of the nonrota-
ting molecule, a centrifugal term that depends on the
rotational quantum number J and falls of with R as
1/R2 (Fig. 9.49). For a bound electronic state this leads
to a maximum of Eeff

pot(R) at a distance Rm, which can
be obtained by setting the first derivative of (9.117) to
zero. This distance

Rm =
[

J(J +1)!2

M(dEpot/dR)

]1/3

(9.118)

depends on the rotational quantum number J and on the
slope of the rotationless potential.

The minimum of the potential is shifted by the ro-
tation of the molecule from Re to larger distances and
the dissociation energy becomes smaller.

Energy levels E(v, J) above the dissociation energy
ED can be still stable, if they are below the maximum of
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hc
E

Fig. 9.49. Effective potential curves of the rotating Na2
molecule for different rotational quantum number J
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Fig. 9.50. Predissociation of a molecule through the rotational
barrier

the potential barrier. However, due to the tunnel effect
(Sect. 4.2.3) molecules in these levels can dissociate by
tunneling through the barrier (Fig. 9.50). This effect is
called predissociation by tunneling. The tunnel proba-
bility depends exponentially on the width of the barrier
and on the energy gap between the maximum of the
barrier and the level energy.

The predissociation rate can be determined by mea-
suring the width δE = h/τ of levels with a lifetime τ . If
the predissociation rate is large compared to the radia-
tive decay of a level, the lifetime τ is mainly determined
by predissociation. Measuring τ(v) for all levels above
the dissociation limit gives information on the form and
heights of the potential barrier.

The dissociating fragments have a kinetic energy

Ekin = E(v, J)− ED(J = 0) ,

which is shared by the two fragments according to their
masses.

9.6 Spectra of Diatomic Molecules

When a molecule undergoes a transition

Ei(ni ,Λi , vi, Ji)↔ Ek(nk,Λk, vk, Jk)

between two molecular states |i〉 and |k〉, electromagne-
tic radiation can be absorbed or emitted with a frequency
ν =∆E/h. Whether this transition really occurs de-
pends on its transition probability, which is proportional
to the absolute square of the dipole matrix element Mik
(see Sect. 7.1). The relative intensities of spectral lines
can therefore be determined if the matrix elements of
the transitions can be calculated. Because of the larger

variety of molecular states, with energies depending on
the electronic, the rotational and vibrational structure
of the molecule, the matrix elements of molecules are
more complicated than those of atoms. In this section
we will discuss their structure and the molecular spectra
derived from them.

For spontaneous emission (fluorescence spectra) the
emission probability of a transition |i〉 → |k〉 is given
by the Einstein coefficient Aik. According to (7.17) Aik

is related to the transition dipole matrix element MiK by

Aik = 2
3
ω3

ik

ε0c3!
|Mik|2 . (9.119a)

For the absorption or stimulated emission of radiation
the transition probability Pik = Bikw(νik) is proportio-
nal to the spectral energy density w(ν) of the radiation
field. In Sect. 7.2 it was shown that Pik is given by

Pik = π

2!2
E2

0

∣∣ψ∗k ε · pψi dτ
∣∣ 2 (9.119b)

where ε = E/|E| is the unit vector in the direction of
the electric field E of the electromagnetic wave, incident
onto the molecules. The transition probability therefore
depends on the scalar product ε· p of electric field vector
and electric transition dipole of the molecule.

9.6.1 Transition Matrix Elements

The dipole matrix element for a transition between two
molecular states with wave functions ψi and ψk is

Mik =
∫∫

ψ∗i pψk dτel dτN . (9.119c)

Fig. 9.51. Illustration of nuclear and electronic contributions
to the molecular dipole moment



9.6. Spectra of Diatomic Molecules 359

The integration extends over all 3(ZA + ZB) electronic
coordinates and over the six nuclear coordinates. Often
only one of the electrons is involved in the transition. In
this case the integration over dτel only needs to be perfor-
med over the coordinates of this electron. The vector p
is the dipole operator, which depends on the coordina-
tes of the electrons, involved in the transition and on the
nuclear coordinates. In Fig. 9.51 it can be seen that

p =−e
∑

i

ri + e(ZA RA + ZB RB) = pel + pN

(9.120)
where pel is the contribution of the electrons and pN
that of the nuclei.

Note that for homonuclear molecules ZA = ZB but
RA =−RB. Therefore pN = 0!

Within the adiabatic approximation we can separate
the total wave function ψ(r, R) into the product

ψ(r, R) =Φ(r, R)×χN(R) (9.121)

of electronic wave function Φ(r, R) of the rigid mol-
ecule at a fixed nuclear distance R and the nuclear wave

nE

)R(Eel
2

)R(Eel
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1

el
2 EE −

'Re
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Fig. 9.52. Rotational and vibrational le-
vels in two different electronic states of
a diatomic molecule

function χ(R); which only depends on the nuclear coor-
dinates. Inserting (9.120, 9.121) into (9.119) the matrix
elements is written as

Mik =
∫∫

Φ∗i χ
∗
N,i(pel + pN)Φkχ

∗
N,k dτel dτN .

(9.122a)

Rearranging the different terms gives

Mik =
∫
χ∗i

[∫
Φ∗i pelΦk dτel

]
χk dτN (9.122b)

+
∫
χ∗1 pN

[∫
Φ∗i Φk dτel

]
χk dτN .

We distinguish between two different cases (Fig. 9.52):

• The two levels |i〉 and |k〉 belong to the same elec-
tronic state (Φi =Φk). This means that the dipole
transition occurs between two vibrational-rotational
levels in the same electronic state Φi . In this case
the first term in the sum (9.122b) is zero because the
integrand r|Φi |2 is an ungerade function of the elec-
tron coordinates r = {x, y, z}. The integration from
−∞ to +∞ therefore gives zero.
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Since the electronic wave functions Φ are
orthonormal, i. e.,

∫
Φ∗i φk dτel = δik (9.123)

the integral over the electronic coordinates in the
second term in the sum (9.122b) is equal to one.
The matrix element then becomes

Mik =
∫
χi,N pNχk,N dτN . (9.124)

The integrand solely depends on the nuclear
coordinates, not on the electronic coordinates!

• Transitions between levels in two different electro-
nic states. In this case the integral over the electronic
coordinates in the second term of (9.122b) is zero be-
cause the Φi , Φk are orthonormal. The second term
is therefore zero and the matrix element becomes

Mik =
∫
χ∗i

[∫
Φ∗i pelΦk dτel

]
χk dτN

= χ∗i Mel
ik(R)χk dτN . (9.125)

We will now discuss both cases separately.

9.6.2 Vibrational-Rotational Transitions

All allowed transitions (vi, Ji)↔ (vk, Jk) between two
rotational-vibrational levels in the same electronic state
form for vi += vk the vibrational-rotational spectrum of
the molecule in the infrared spectral region between
λ= 2−20 µm. For vi = vk we have pure rotational
transitions between rotational levels within the same
vibrational state, which form the rotational spectrum
in the microwave region with wavelengths in the range
0.1−10cm.

The dipole matrix element for these transitions is
according to (9.120) and (9.124)

Mrot vib
ik = e

∫
χ∗i (ZA RA + ZB RB)χk dτN . (9.126)

For homonuclear diatomic molecules with ZA = ZB
and MA = MB is RA =−RB and therefore the integrand
is zero⇒ Mrot vib

ik = 0.

Homonuclear diatomic molecules have no dipole-
allowed vibrational-rotational spectra. This
means they do not absorb or emit radiation on
transitions within the same electronic state. They
may have very weak quadrupole transitions.

Note:

The molecules N2 and O2, which represent the major
constituents of our atmosphere, cannot absorb the in-
frared radiation emitted by the earth. Other molecules,
such as CO2, H2O, NH3 and CH4 do have an electric
dipole moment and absorb infrared radiation on their
numerous vibrational-rotational transitions. Although
they are present in our atmosphere only in small concen-
trations they can seriously perturb the delicate energy
balance between absorbed incident sun radiation and
the energy radiated back into space by the earth (green-
house effect). If their concentration is increased by only
small amounts this can increase the temperature of the
atmosphere at the earth’s surface (greenhouse effect).

The structure of the vibration-rotation-spectrum and
the pure rotation spectrum can be determined as follows.

Since the interaction potential between the two
atoms is spherically symmetric, we choose spherical
coordinates for the description of the nuclear wave
function χN(R, ϑ, ϕ).

If the interaction between rotation and vibration is
sufficiently weak we can write χN as the product

χN(R, ϑ, ϕ) = S(R)Y M
J (ϑ, ϕ) (9.127)

of the vibrational wave function S(R) in (9.102) and the
rotational wave function Y M

J (ϑ, ϕ) for a rotational level
with angular momentum J and its projection M ·! onto
the quantization axis, which is a preferential direction
in the laboratory coordinate system. For absorbing tran-
sition the quantization axis is, for instance, the direction
of the incident electromagnetic wave, or the direction
of its E-vector.

With R = |RA− RB| and RA/RB = MB/MA
(Figs. 9.42 and 9.51) and p̂ = p/|p| the dipole moment
can be written as

pN = p̂ · |pN| = e
MB · ZA−MA · ZB

MA + MB
· R · p̂

= CR p̂ . (9.128)
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The volume element in spherical coordinates is

dτN = R2 dR sinϑ dϑ dϕ .

This gives the matrix element

Mik = C ·
∫

R

S∗vi
(R)Svk (R)R3 dR (9.129)

×
∫

ϑ,ϕ

Y Mi
Ji

Y Mk
Jk

p̂ sinϑ dϑ dϕ .

The first factor describes the vibrational transition vi↔
vk. If the harmonic oscillator functions are used for
the vibrational functions S(R) the calculations of the
integral shows that the integral is zero, unless

∆v = vi −vk = 0 or ±1 . (9.130)

The + sign stands for absorbing, the minus sign for
emitting transitions. Transitions with ∆v = 0 are pure
rotational transitions within the same vibrational level.

This selection rule means that for the harmo-
nic oscillator only transitions between neighboring
vibrational levels are allowed.

For anharmonic potentials, such as the Morse po-
tential, higher order transitions with ∆v = ±2, ±3, . . .
are also observed. Such overtone-transitions are, howe-
ver, much weaker than the fundamental transitions with
∆v = ±1.

The second integral in (9.129) describes the rota-
tional transitions. It depends on the orientation of the
molecular dipole moment p in space.

The amplitude of the radiation emitted into the di-
rection k in space is proportional to the scalar product
of k · p and the intensity is the square of this amplitude.
For absorbing transitions it is proportional to the scalar
product E · p of electric field amplitude and molecular
dipole moment p.

With the orientation angles Θ and φ of p̂ = p/|p|
against the space-fixed axis X; Y ; Z we obtain the
relation (Fig. 9.53)

ε̂ · p = p(εx sinΘ cosφ+εy sinΘ sinφ+εz cosΘ)
(9.131a)

where εi is the ith component of ε̂ = E/|E| against
the space fixed axis i = X, Y, Z. The angles can be
expressed by the spherical surface harmonics Y M

J :
√

4π
3

Y 0
1 = cosΘ ;

√
8π
3

Y±1
1 =∓ sinΘ · e±iφ

(9.131b)
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φ
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→

Fig. 9.53. Orienta-
tion of molecular
dipole moment p in
a space-fixed coor-
dinate system

which gives

ε̂ · p = (9.131c)

p

√
4π
3

(
εzY 0

1 + −εx + iεy√
2

Y 1
1 + εx + iεy√

2
Y−1

1

)
.

Inserting this into the second integral in (9.129) and
extracting the components of the space fixed unit vec-
tor ε out of the integral gives for the angular part of the
transition probability integrals of the form

∫
Y Mi

Ji
Y∆M

1 Y Mk
Jk

dΩ with ∆M = 0,±1

with the result that these integrals are always zero,
except for ∆J = Ji − Jk = ±1.

This selection rule is readily understandable, be-
cause the absorbed or emitted photon has the spin
s = ±1h and the total angular momentum of the system
photon + molecule has to be conserved.

For the projection quantum number M the selection
rules are analogue to that for atoms:
∆M = 0 for linear polarization of the radiation and

∆M = ±1 for circular polarization.

Note:

The angle ϑ is measured against the molecular axis in
the molecular coordinate system, whileΘ and φ are the
angles between the molecular dipole moment and the
space fixed quantization axis (see above).

In order to save indices in spectroscopic literature
the upper state (vk, Jk) is always labeled with a prime as
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(v′, J ′), whereas the lower state (vi, Ji) is labeled with
a double prime as (v′′, J ′′). Transitions with

∆J = J ′ − J ′′ = +1

are called R-transitions, those with

∆J = J ′ − J ′′ = −1

are P-transitions.
All allowed rotational transitions appear in the spec-

trum as absorption- or emission lines (Fig. 9.54). All
rotational lines of a vibrational transition form a vi-
brational band. Its rotational structure is given by the
wavenumbers of all rotational lines

ν(v′, J↔ v′′, J ′′) (9.132)

= ν0 + B′v J ′(J ′ +1)−D′v J ′2(J ′ +1)2

−
[
B′′v J ′′(J ′′ +1)−D′′v J ′′2(J ′′ +1)2]

where ν0 is the band origin. It gives the position of
a fictious Q-line with J ′ = J ′′ = 0. Since this line does
not exist in rotational-vibrational spectras of diatomic
molecules, there is a missing line at ν = ν0 (Fig. 9.54).

Since the rotational constant Bv = Be−αe(v+ 1
2 )

generally decreases with increasing v (αe > 0 for most
molecules) it follows that B′v < B′′v . Plotting ν(J = J ′′)
for P- and R transitions as a function of ν gives the
Fortrat-diagram shown in Fig. 9.55. The R-lines are on
the high frequency side of the band origin ν0 while
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Fig. 9.55. Fortrat diagram of the P- and R-branch of
vibrational-rotational transitions
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Fig. 9.56. Vibrational-rotational absorption of the H35Cl
and H37Cl isotopomers in the infrared region between
λ= 3.3−3.7 µm

the P lines are on the low frequency side. In Fig. 9.56
the vibration-rotation spectrum of HCl is shown with
the P- and R-branch. The lines are split into two
components, because the absorbing gas was a mixture
of the two isotopomers of HCl with the two atomic
isotopes 35Cl and 37Cl. Since the rotational and vibra-
tional constants depend on the reduced mass M the
lines of different isotopomers are shifted against each
other.

9.6.3 The Structure of Electronic Transitions

We will now evaluate the matrix element (9.125) for
electronic transitions. The electronic part Mel

ik(R) de-
pends on the internuclear distance R, because the
electronic wave functions Φ depend parametrically
on R. In many cases the dependence on R is weak
and we can expand Mel

ik(R) into a Taylor series

Mel
ik(R) = Mik(Re)+

(
dMel

ik

dR

)

Re

(R− Re)+ . . . .

(9.133)

In a first approximation only the first term, independent
of R, is considered, which can be regarded as an average
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of Mik(R) over the range of R-values covered by the
vibrating molecule. In this case the constant Mik(Re)
can be put before the integral over the nuclear coor-
dinates. Using the normalized nuclear wave functions
χN = S(R) ·Y(ϑ, ϕ) and the vibrational wave functions
ψvib = R · S(R) the matrix element becomes

Mik = Mel
ik

∫
ψ∗vib(vi)ψvib(vk) dR (9.134)

·
∫

Y Mi
Ji

Y Mk
Jk

sinϑ dϑ dϕ

where Mh is the projection of the rotational angular
momentum J onto a selected axis (for instance, in the
direction of the E-vector or the k-vector of the incident
electromagnetic wave for absorbing transitions, or in the
direction from the emitting molecule to the observer for
fluorescent transitions).

Note:

This approximation of an electric transition dipole mo-
ment independent of R is, for many molecules with
a strong dependence Mel

ik(R), too crude (Fig. 9.57). In
such cases the second term in the expansion (9.133) has
to be taken into account.

Since the probability of spontaneous emission is
proportional to the square |Mik|2, the intensity of
a spectral emission line

I(ni, vi, Ji ↔ nk, vk, Jk)∝
∣∣Mel

ik

∣∣ 2 (9.135)

· FCF(vi , vk) · HL(Ji , Jk)

is determined by three factors.
The electronic part |Mel

ik|2 gives the probability of
an electron jump from the electronic state |i〉 to |k〉. It
depends on the overlap of the electronic wave functions
Φi and Φk and their symmetries.

The Franck–Condon factor

FCF(vi, vk) =
∣∣∣∣

∫
ψvib(vi) ·ψvib(vk) dR

∣∣∣∣
2

(9.136)

is determined by the square of the overlap integral of
the vibrational wave functions ψvib(vi) and ψvib(vk) in
the upper and lower electronic state.

The Hönl–London factor

HL(Ji, Jk) =
∣∣∣∣

∫
Y Mi

Ji
Y Mk

Jk
sinϑ dϑ dϕ

∣∣∣∣
2

(9.137)
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Fig. 9.57. Dependence of electronic transition dipole on in-
ternuclear distance R for several transitions of the Na2
molecule

depends on the rotational angular momenta and their
orientation in space. This factor determines the spatial
distribution of the emitted radiation.

An electric dipole transition in fluorescence can only
take place if none of these three factors is zero.

The probability of absorbing transitions depends
according to (9.119b) on the scalar product of the
electric field vector E and the dipole moment p

Pik ∝ |E · Mik| 2 .

Since only the last factor in (9.135) depends on the
orientation of the molecule in space, i. e., the direc-
tion of Mik against the electric field vector E, only the
Hönl–London factor differs for spontaneous emission
and absorbing transitions. For the intensity I = ε0 E2

of the incident electromagnetic wave we obtain with
E = ε · |E| the transition probability

Pik = ε0 E2 ·
∣∣Mel

ik(Re)
∣∣ 2×

∣∣∣∣

∫
ψ

vi
vib ·ψvk

vib · dR
∣∣∣∣
2

×
∣∣∣∣

∫
Y Mi

Ji
ε̂ · p̂Y Mk

Jk
sinϑ dϑ dϕ

∣∣∣∣
2

. (9.138)

a) The General Structure
of Electronic Transitions

Molecular electronic spectra have structures as shown
in (Fig. 9.58).
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Fig. 9.58. Schematic representation of the structure of
molecular transitions

All allowed transitions J ′′i ←→ J ′k between the ro-
tational levels J ′k of a given vibrational level v′ in the
upper electronic state and J ′′i of v′′ in the lower elec-
tronic state form a band. In absorption or fluorescence
spectra such a band consists of many rotational lines.

Transitions with ∆J = 0 form the Q-branch, those
with ∆J = J ′k− J ′′i = +1 the R-branch and with
∆J =−1 the P-branch. Q-branches are only present
in transitions where the electronic angular momentum
changes by 1h, (e. g., forΣ↔Π transitions) in order to
compensate for the spin of the absorbed or emitted pho-
ton. Electronic transitions with ∆Λ= 0 (e.g., between
two Σ-states) have only P and R branches.

The total system of all vibrational bands of this
electronic transition is called a band system. The total
number of lines in such a band system depends not only
on the transition probabilities but also on the number of
populated levels in the lower or upper electronic state.

The intensities of the lines in the emission spectrum
are proportional to the population of the emitting upper
levels and to the transition probability Aik:

I em
ik = gk Nk Aik (9.139a)

where gk = (2Jk +1) is the statistical weight of the
level. The number of emitting levels depends on the

excitation mechanism. Generally, the energy of the up-
per electronic state is for T = 300 K large compared to
the thermal energy kT . Therefore the thermal popula-
tion is negligible. Optical pumping with lasers allows
the population of single selected levels. In this case the
fluorescence spectrum becomes very simple because it
is emitted from a single upper level. In gas discharges,
many upper levels are excited by electron impact and
the number of lines in the emission spectrum becomes
very large.

The absorption spectrum consists of all allowed
transitions from populated lower levels.

Their intensity, as given in Sect. 7.2, is given by

I abs
ik = gi Niw(ν)Bik . (9.139b)

At thermal equilibrium the population distribution
follows a Boltzmann distribution

Ni = gi e−Ei/kT . (9.140)

b) The Rotational Structure
of Electronic Transitions

The wavenumnber of a rotational line in the electro-
nic spectrum of a diatomic molecule corresponding to
a transition (ni , vi , Ji)↔ (nk, vk, Jk) is

νik = (T ′e−T ′′e )+
(
Tvib(v

′)−Tvib(v
′′)

)
(9.141)

+
(
Trot(J ′)−Trot(J ′′)

)

where Te gives the minimum of the potential curves
Epot(R) of the electronic states |i〉 or |k〉, Tvib is the
term value of the vibrational state for J = 0 and Trot(J)
the pure rotational term value.

The rotational structure of a vibrational band is
then (similarly to the situation for vibrational–rotational
transitions within the same electronic state) given by

νik = ν0(ni, nk, vi , vk)+ B′v J ′(J ′ +1) (9.142)

−D′v J ′2(J ′ +1)2

−
[
B′′v J ′′(J ′′ +1)−D′′v J ′′2(J ′′ +1)2] .

In contrast to (9.132), the rotational constant B′v in the
upper state can now either be larger or smaller than B′′v in
the lower electronic state. This depends on the binding
energies and the equilibrium distances Re in the two
states. The Fortrat-Diagrams shown in Fig. 9.59 has
a different structure for each of the two cases.
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At those J-values where the curve ν(J) becomes
vertical, the density of rotational lines within a given
spectral interval has a maximum. The derivative dν/dJ
changes its sign. For the case B′′v > B′v the positions ν(J)
of the rotational lines increase for R-lines before the
maximum and then decrease again (Fig. 9.59a). The po-
sition νh of this line pileup is called the band head. For
B′′v > B′v the R-lines show a band head at the high fre-
quency side of the band, while for B′′v < B′v the P-lines
accumulate in a band head at the low frequency side
(Fig. 9.59b). The line density may become so high, that
even with very high spectral resolution the different li-
nes cannot be resolved. This is illustrated by Fig. 9.60,
which shows the rotational lines in the electronic tran-
sition of the Cs2 molecule around the band head, taken
with sub-Doppler resolution.

In molecular electronic spectra taken with photogra-
phic detection and medium resolution where only part
of the rotational lines are resolved, a sudden jump of the
blackening on the photoplate appears at the band head

Fig. 9.59a,b. Fortrat-diagram for P, Q and R branches in
electronic transitions: (a) B′′v > B′v (b) B′′v < B′v

1GHz

Fig. 9.60. Band head of the vibrational band v′ = 9← v′′ =
14 of the electronic transition C 1Πu← X 1Σ+

g of the Cs2
molecule, recorded with sub-Doppler-resolution

while the line density gradually decreases with incre-
asing distance from the band head. The band appears
shadowed (Fig. 9.61) to the opposite frequency side of
the band head. For B′′v > B′v the band is red-shadowed
and the band head is on the blue side of the band, while
for B′′v < B′v the band is blue-shadowed and the band
head appears on the red side.

In cases where the electronic transition allows Q-
lines, their spectral density is higher than that of the
P- and R-lines. For B′v = B′′v all Q-lines Q(J) have the
same position. For B′v > B′′v their positions ν(J) increase
with increasing J (Fig. 9.59a) while for B′v < B′′v they
decrease (Fig. 9.59b).

v''
v'

2 1 0 0 0 0
0 0 0 1 32

3,
80

5

3,
57

7

3,
37

1

3,
15

9

2,
97

7

2,
82

0

Fig. 9.61. Photographic recording of the band structure in
the electronic transition 3Πg← 3Πu of the N2 molecule.
The wavelengths of the band heads are given in Å = 0.1 nm
above the spectrum (with the kind permission of the late
Prof. G. Herzberg [G. Herzberg: Molecular Spectra and
Molecular Structure Vol. I (van Nostrand, New York, 1964)])
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c) The Vibrational Structure
and the Franck–Condon Principle

The vibrational structure of electronic transitions is go-
verned by the Franck–Condon factor (9.136), which in
turn depends on the overlap of the vibrational wave
functions in the two electronic states. In a classical
model, which gives intuitive insight into electronic tran-
sitions, the absorption or emission of a photon occurs
within a time interval that is short compared to the vi-
brational period Tvib of the molecule. In a potential
diagram (Fig. 9.62) the electronic transitions between
the two states can be then represented by vertical ar-
rows. This means, that the internuclear distance R is
the same for the starting point and the final point of the
transition. Since the momentum p = hν/c of the absor-
bed or emitted photon is very small compared to that of
the vibrating nuclei, the momentum p of the nuclei is
conserved during the electronic transition. Also, the ki-
netic energy Ekin = p2/2M does not change. From the
energy balance

hv = E ′(v′)− E ′′(v′′)

= E ′pot(R)+ E ′kin(R)−[E ′′pot(R)+ E ′′kin(R)]
= E ′pot(R∗)− E ′′pot(R∗) (9.143)

0v >∆

Fig. 9.62. Illustration of the Franck-Condon principle for
vertical transitions with ∆v = 0 (a) and ∆v > 0 in case of
potential curves with R′′e = R′e and R′e > R′′e

it follows that the electronic transition takes place at
a nuclear distance R∗ where the kinetic energies of the
vibrating nuclei in the upper and lower state are equal,
i. e., E ′kin(R∗) = E ′′kin(R∗). This can be graphically
illustrated by the difference potential

U(R) = E ′′pot(R)− E ′pot(R)+ E(v′) (9.144)

introduced by Mulliken (Fig. 9.63). The electron jump
from one electronic state into the other takes place at
such a value R∗, where Mulliken’s difference potential
intersects the horizontal energy line E = E(v′′), where

U(R∗) = E(v′′) .

In the quantum mechanical model, the probability
for a transition v′ ↔ v′′ is given by the Franck–Condon
factor (9.136). The ratio

P (R) dR = ψ ′vib(R)ψ ′′vib(R) dR∫
ψ ′vib(R)ψ ′′vib(R) dR

(9.145)

gives the probability that the transition takes place in the
interval dR around R. It has a maximum for R = R∗.

If the two potential curves E ′pot(R) and E ′′pot(R)
have a similar R-dependence and equilibrium distan-
ces R′e ≈ R′′e the FCF for transitions with ∆v = 0 are
maximum and for ∆v += 0 they are small (Fig. 9.62a).

''

'

U(R) difference
potential

Fig. 9.63. Illustration of the Mulliken-difference potential
V(R) = E′′pot(R)− E′pot(R)+ E(v′)
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The larger the shift ∆R = R′e− R′′e the larger becomes
the difference ∆v for maximum FCF (Fig. 9.62b).

9.6.4 Continuous Spectra

If absorption transitions lead to energies in the upper
electronic state above its dissociation energy, unbound
states are reached with non-quantized energies. The ab-
sorption spectrum then no longer consists of discrete
lines but shows a continuous intensity distribution I(ν).
A similar situation arises, if the energy of the upper
state is above the ionization energy of the molecule,
similarly to atoms (see Sect. 7.6).

In the molecular spectra the ionization continuum is,
however, superimposed by many discrete lines that cor-
respond to transitions into higher vibrational-rotational
levels of bound Rydberg states in the neutral elec-
tron. Although the electronic energy of these Rydberg
states is still below the ionization limit, the additio-
nal vibrational-rotational energy brings the total energy
above the ionization energy of the non-vibrating and
non-rotating molecule (Fig. 9.64).

Such states can decay by autoionization into a lower
state of the molecular ion, where part of the kinetic
energy of the vibrating and rotating molecular core is

Fig. 9.64. Excitation (1) of a bound Rydberg level in the
neutral molecule and (2) of a bound level in the molecular
ion M+

transferred to the Rydberg electron, which then gains
sufficient energy to leave the molecule (Fig. 9.65). The
situation is similar to that in doubly excited Rydberg
atoms where the energy can be transferred from one ex-
cited electron to the Rydberg electron (see Sect. 6.6.2).
However, while this process in atoms takes place wi-
thin 10−13−10−15 s, due to the strong electron-electron
interaction, in molecules it is generally very slow (bet-
ween 10−6−10−10 s), because the coupling between
the motion of the nuclei and the electron is weak.
In fact, within the adiabatic approximation it would
be zero! The vibrational or rotational autoionization
of molecules represent a breakdown of the Born–
Oppenheimer approximation. The decay of these levels
by autoionization is slow and the lines appear sharp.
In Fig. 9.65 an example of the excitation scheme of
autoionizing Rydberg levels is shown. The Rydberg le-
vels are generally excited in a two-step process from
the ground state |g〉 to level |i〉 by absorption of a pho-
ton from a laser and the further excitation |i〉→ |k〉 by
a photon from another laser. The autoionization of the
Rydberg level |k〉 is monitored by observation of the
resultant molecular ions. A section of the autoioniza-
tion spectrum of the Li2-molecule with sharp lines and
a weak continuous background, caused by direct pho-
toionization, is shown in Fig. 9.66. The lines have an
asymmetric line profile called a Fano-profile [9.11].
The reason for this asymmetry is an interference effect
between two possible excitation paths to the energy E∗

in the ionization continuum, as illustrated in Fig. 9.67:

neutral

|k〉

|i〉

|g〉

|f〉

Auto ionizationM*

)e(E)f(M)k(*M kin
−+ +→

+M

ion

Fig. 9.65. Two-step excitation of a molecular Rydberg le-
vel |k〉, which transfers by auto ionization into a lower level | f 〉
of the molecular ion. The difference energy is given to the free
electron
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Fig. 9.66. Section of the auto ioniza-
tion spectrum of the Li2 molecule

1. The excitation of the Rydberg level |k〉 of the neu-
tral molecule from level |i〉 with the probability
amplitude D1 with subsequent autoionization,

2. The direct photoionization from level |i〉 with the
probability amplitude D2.

When the frequency of the excitation lasers is tu-
ned, the phase of the transition matrix element does not
change much for path 2, but much more for path 1, be-
cause the frequency is tuned over the narrow resonance
of a discrete transition. The total transition probability

Pif = |D1 + D2| 2

therefore changes with the frequency of the excitation
laser because the interference is on one side of the re-

a) b)

1 2

|i〉

|k〉 E*
σ

ε

1D 2D

12D

dσ

q−1/q

Fig. 9.67. (a) Interference of two possible excitation pathways
to the energy E∗ in the ionization continuum (b) Resultant
Fano-profile with asymmetric line shape. σd is the absorption
crosssection for direct photoionization

sonance destructive on the other constructive, resulting
in an asymmetric line profile.

Continuous spectra can also appear in emission, if
a bound upper level is excited that emits fluorescence
into a repulsive lower state. Such a situation is seen in
excimers, which have stable excited upper states but an
unstable ground state (Fig. 9.68). For illustration, the
emission spectrum of an excited state of the NaK alkali
molecule is shown in Fig. 9.69. This state is a mixture of

Continuous
fluorescence

Discrete
lines

Laser excitation

E

R

Π1D

Π3

+Σ3

Σ1X

Fig. 9.68. Level scheme of the NaK molecule with excitation
and discrete and continuous emission spectrum



9.6. Spectra of Diatomic Molecules 369

a) b)E

630 625
Discrete emission

spectrum

Continuous
emission spectrum

695 675 655 635λ / nmR

v''

v''

v''

7'v =
2

''v'v drI ∫ ψψ∝

)R(E'pot )R(E'pot

U(R)

E''   (R)pot

1cm/ −ν
0

Airy function

Fig. 9.69. (a) Vibrational overlap and Franck-Condon factor for the continuous emission (b) Measured emission spectrum of
the NaK molecule

a singlet and a triplet state, due to strong spin-orbit coup-
ling. Therefore transitions from this mixed state into
lower singlet as well as triplet states becomes allowed.
While the emission into the stable singlet ground state
X 1Σ shows discrete lines, the emission into the weakly
bound lowest triplet state 3 3Σ shows, on the short wave-
length side, a section of discrete lines terminating at
bound vibrational-rotational levels in the shallow poten-
tial well of the a 3Σ state and, on the long wavelength
side, a modulated continuum terminating on energies
above the dissociation limit of the a 3Σ state. The inten-
sity modulation reflects the FCF, i. e., the square of the

overlap integral between the vibrational wave function
of the bound level in the upper electronic state with
the function of the unstable level in the repulsive po-
tential above the dissociation energy of the lower state
which can be described by an Airy function. The fre-
quency ν= E ′(R)− E ′′(R) and the wavelength λ= c/ν
of the emission depends on the internuclear distance R
because the emission terminates on the Mulliken po-
tential of the repulsive lower state (dashed blue curve
in Fig. 9.69). The number q = v′ −1 of nodes in the
fluorescence spectrum gives the vibrational quantum
number v′ of the emitting level.
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• For the simplified model of a rigid diatomic
molecule, the electronic wave functions ψ(r, R)
and the energy eigenvalues E(R) can be ap-
proximately calculated as a function of the
internuclear distance R. The wave functions are
written as a linear combination of atomic orbitals
(LCAO approximation) or of other suitable basis
functions.

• In a rotating and vibrating molecule the kinetic
energy of the nuclei is generally small compa-
red to the total energy of a molecular state. This
allows the separation of the total wave func-
tion ψ(r, R) = χN(R)Φel(r, R) into a product of
a nuclear wave function χ(R) and an electro-
nic function Φel(r, R), which depends on the
electronic coordinates r and only contains R as
a free parameter. This approximation, called the
adiabatic or Born–Oppenheimer approximation,
neglects the coupling between nuclear and elec-
tron motion. The potential equals that of the rigid
molecule and the vibration and rotation takes
place in this potential.

• Within this approximation the total energy of
a molecular level can be written as the sum
E = Eel + Evib + Erot of electronic, vibrational
and rotational energy. This sum is independent
of the nuclear distance R.

• The electronic state of a diatomic molecule is
characterized by its symmetry properties, its to-
tal energy E and by the angular momentum and
spin quantum numbers. For one-electron systems
these are the quantum numbers λ = lz/h and
σ = sz/h of the projections lz of the electronic
orbital angular momentum and sz of the spin s
onto the internuclear z-axis. For multi-electron
systems L =Σli , S =Σsi ,Λ= Lz/h =Σλi , and
Ms =Σσi = Sz/h. Although the vector L might
depend on R, the projection Lz does not.

• The potential curves Epot(R) are the sum of mean
kinetic energy 〈Ekin〉 of the electrons, their po-
tential energy and the potential energy of the
nuclear repulsion. If these potential curves have
a minimum at R = Re, the molecular state is sta-
ble. The molecule vibrates around the equilibrium
distance Re. If Epot(R) has no minimum, but

monotonically decreases with increasing R the
state is unstable and it dissociates.

• The vibration of a diatomic molecule can be de-
scribed as the oscillation of one particle with
reduced mass M = MA MB/(MA + MB) in the
potential Epot(R). In the vicinity of Re the po-
tential is nearly parabolic and the vibrations can
be well-approximated by a harmonic oscillator.
The allowed energy eigenvalues, defined by the
vibrational quantum number v, are equidistant
with a separation ∆E = !ω. For higher vibratio-
nal energies the molecular potential deviates from
a harmonic potential. The distances between vi-
brational levels decrease with increasing energy.
A good approximation to the real potential is the
Morse-potential, where ∆Evib decreases linearly
with energy. Each bound electronic state has only
a finite number of vibrational levels.

• The rotational energy of a diatomic molecule
Erot = J(J +1)h2/2I is characterized by the ro-
tational quantum number J and the moment
of inertia I = MR2. Due to the centrifugal
force Fc the distance R increases slightly
with J until Fc is compensated by the resto-
ring force Fr =−dEpot/dR and the rotational
energy becomes smaller than that of a rigid
molecule.

• The absorption or emission spectra of a diatomic
molecule consists of:
a) Pure rotational transitions within the same vi-
brational level in the microwave region
b) Vibrational-rotational transitions within the
same electronic state in the infrared region
c) Electronic transitions in the visible and UV
region

• The intensity of a spectral line is proportional to
the product N · |Mik|2 of the population density N
in the absorbing or emitting level and the square
of the matrix element Mik.

• Homonuclear diatomic molecules have neither
a pure rotational spectrum nor a vibrational-
rotational spectrum. They therefore do not absorb
in the microwave and the mid-infrared region, un-
less transitions between close electronic states fall
into this region.

S U M M A R Y

!
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• The electronic spectrum consists of a system
of vibrational bands. Each vibrational band
includes many rotational lines. Only rotatio-
nal transitions with ∆J = 0; ±1 are allowed.
The intensity of a rotational transition de-
pends on the Hönl-London factor and those
of the different vibrational bands are determi-
ned by the Franck-Condon factors, which are

equal to the square of the vibrational overlap
integral.

• Continuous absorption spectra arise for transi-
tions into energy states above the dissociation
energy or above the ionization energy. Continuous
emission spectra are observed for transitions
from bound upper states into a lower state with
a repulsive potential.

1. How large is the Coulomb repulsion of the nuclei
in the H+

2 ion and the potential energy of the
electron with wave function Φ+(r, R) at the
equilibrium distance Re = 2a0? First calculate
the overlap integral SAB(R) in (9.13) with the
wave function (9.9). What is the mean kinetic
energy of the electron, if the binding energy is
Epot(Re) =−2.65 eV? Compare the results with
the corresponding quantities for the H atom.

2. How large is the electronic energy of the H2 mol-
ecule (without nuclear repulsion) for R = Re and
for the limiting case R = 0 of the united atom?

3. a) Calculate the total electronic energy of the H2
molecule as the sum of the atomic energies of
the two H atoms minus the binding energy of H2.
b) Compare the vibrational and rotational energy
of H2 at a temperature T = 300 K with the energy
of the first excited electronic state of H2.

4. Prove that the two separated equations (9.75)
are obtained when the product ansatz (9.74) is
inserted into the Schrödinger equation (9.73).

5. Show that the energy eigenvalues (9.104) are
obtained when the Morse potential (9.103) is
inserted into the Schrödinger equation (9.80).

6. What is the ionization energy of the H2 mol-
ecule when the binding energies of H2 and H+

2
are EB(H2) =−4.48 eV and EB(H+

2 ) =−2.65 eV
and the ionization energy of the H atom
EIo = 13.6 eV?

7. Calculate the frequencies and wavelengths for
the rotational transition J = 0→ J = 1 and
J = 4→ J = 5 for the HCl molecule. The in-
ternuclear distance is Re = 0.12745 nm. What is
the frequency shift between the two isotopomers
H35Cl and H37Cl for the two transitions? What is
the rotational energy for J = 5?

8. If the potential of the HCl molecule around Re
is approximated by a parabolic potential Epot =
k(R− Re)

2 a vibrational frequency ν0 = 9×
1013 s−1 is obtained. What is the restoring force
constant k? How large is the vibrational amplitude
for v = 1?

P R O B L E M S


