Genetic Engineering of Plants: Methodology

- Plant transformation with the Ti plasmid of Agrobacterium tumefaciens
- Ti plasmid-derived vector systems
- Microprojectile bombardment
- Chloroplast engineering
- Use of reporter genes in transformed plant cells
- Manipulation of gene expression in plants
- Production of marker-free transgenic plants

Why genetically engineer plants?

- To improve agricultural, horticultural or ornamental value of a plant (much faster than conventional plant breeding)
- To serve as a living bioreactor for production of economically important proteins or metabolites
- To produce vaccines or antibodies for human health
- To provide a renewable source of energy
- To study the role of genes (and gene products) in plant growth and development

Table 10.1 Some pharmaceutical proteins that have been produced in transgenic plants

Table 10.1

Pharmaceutical protein	Plant(s)	Application(s)	
α-Tricosanthin	Tobacco	HIV therapy	
Allergen-specific T-cell epitope	Rice	Pollinosis	
Angiotensin-1-converting enzyme	Tobacco, tomato	Hypertension	
Cyanovirin-N	Tobacco	HIV micobicide	
Glucocerebrosidase	Tobacco	Gaucher disease	
Human α1-antitrypsin	Rice, tomato	Cystic fibrosis, liver disease, hemorrhage	
Human apolipoprotein	Safflower	Plaque reduction	
Human aprotinin	Corn	Trypsin inhibitor for transplantation surgery	
Human enkephalins	Arabidopsis, canola	Antihyperanalgesic by opiate activity	
Human epidermal growth factor	Tobacco	Wound repair, control of cell proliferation	
Human erythropoietin	Tobacco	Anemia	
Human granulocyte-macrophage colony- stimulating factor	Tobacco	Neutropenia	
Human growth hormone	Tobacco	Dwarfism, wound healing	
Human hemoglobin	Tobacco	Blood substitute	
Human hirudin	Canola, tobacco	Thrombin inhibitor, anticoagulant	
Human homotrimeric collagen I	Tobacco	Collagen synthesis	
Human insulin	Potato, Arabidopsis, safflower	Diabetes	
Human α interferon	Rice, turnip	Hepatitis C and B	
Human β interferon	Tobacco	Antiviral	
Human interleukin-2 and interleukin-4	Tobacco	Immunotherapy	
Human lactoferrin	Potato, rice	Antimicrobial, diarrhea	
Human muscarinic cholinergic receptors	Tobacco	Central and peripheral nervous systems	
Human placental alkaline phosphatase	Tobacco	Achonodroplasia or cretinism in children	
Human protein C	Tobacco	Anticoagulant	
Human serum albumin	Tobacco	Liver cirrhosis, burns, surgery	
Human somatotropin	Tobacco	Growth hormone	
Lipase	Corn	Cystic fibrosis	

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Table 10.2 Examples of potentially therapeutic antibodies and antibody fragments that have been produced in plants

Table 10.2

Host plant	Disease or antigen
Tobacco	38C13 mouse B-cell lymphoma
Tobacco	Anthrax
Tobacco	B-cell lymphoma
Tobacco	Breast and colon cancer
Tobacco	Broad-spectrum anticancer
Tobacco	Botulism
Tobacco	CD40 (cell surface protein)
Tobacco	Cell surface protein from mouse B-cell lymphoma
Tobacco	Hepatitis
Soybean	Herpes simplex virus
Tobacco	Human carcinoembryonic antigen
Pea	Human cancer cell surface antigen
Tobacco	Human CD40 cell surface protein
Tobacco	Human creatine kinase
Alfalfa	Human IgG
Tobacco	Rabies
Tobacco	Salmonella surface antigen
Tobacco	Streptococcus mutans cell surface antigen SA 1/11
Tobacco	Substance P (neuropeptide)

Disease or causative agent Plant(s) or vector Hepatitis **B** Tobacco, potato, yellow lupin, lettuce Malaria Virus Rabies Tomato, spinach, virus Human rhinovirus Virus HIV Virus E. coli Tobacco, potato, corn Norwalk virus Tobacco, potato, corn Diabetes Tobacco, potato, carrot Foot-and-mouth disease Arabidopsis, alfalfa Cholera Potato, rice Human cytomegalovirus Tobacco Dental caries Tobacco **Respiratory syncytial virus** Tomato Human papillomavirus Potato, tobacco Anthrax Tobacco SARS Tomato, tobacco Staphylococcus aureus Cowpea Measles Lettuce Influenza virus Tobacco Arabidopsis Tuberculosis Alfalfa Rotavirus

Table 10.3 Some potential vaccine antigens that have been expressed in plants

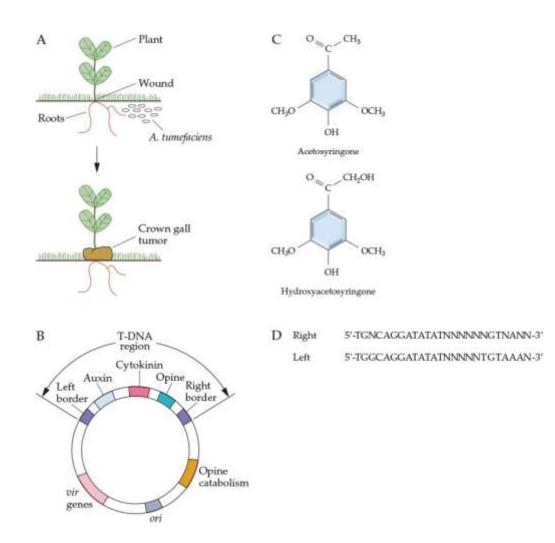
Table 10.3

Note that in some cases the antigen was cloned into a transient-expression system, such as a plant virus, often facilitating high levels of expression within a period of 1 to 2 weeks. SARS, severe acute respiratory syndrome.

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Figure 10.1 Genetic engineering of plants with the Ti plasmid of *Agrobacterium tumefaciens*, a soil bacteria.

A. Infection of a wounded plant by *Agrobacterium tumefaciens* leads to the production of a crown gall tumor (cancer)

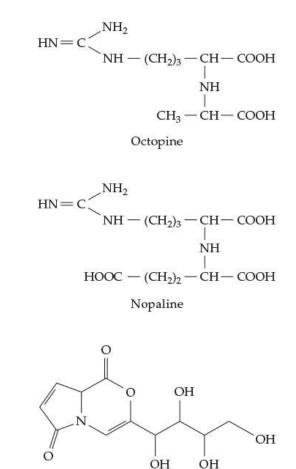

B. The Ti plasmid of

Agrobacterium tumefaciens

C. Wound signals produced by the plant to induce expression of the *vir* genes on the Ti plasmid D. T-DNA right and left border nucleotide sequences involved in transfer of the T-DNA into the plant genome

See also

https://www.youtube.com/watch?v =wTO-KmpZQgQ


Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Crown Gall on Tobacco

Infection of a plant with *Agrobacterium tumefaciens* and formation of crown galls

Figure 10.3 Chemical structures of three opines (amino acid-like molecules) produced by T-DNA genes expressed in an infected plant; opines are used as food by *A. tumefaciens*.

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Plant Genetic Engineering with the binary Ti plasmid System

Clone YFG (your favorite gene) or a Target gene in the small T-DNA-like **plasmid** in *E. coli*, isolate this plasmid, and use it to transform A. tumefaciens which already contains a **disarmed Ti plasmid**. The disarmed Ti plasmid lacks a functional T-DNA region. This is a binary system as it involves 2 plasmids. Note that the vir genes on the disarmed Ti plasmid serve to move the T-DNA-like region of the small plasmid into the plant genome, resulting in random integration into the plant genome.

See also

https://www.youtube.com/watch?v=L7q nY_GqytM

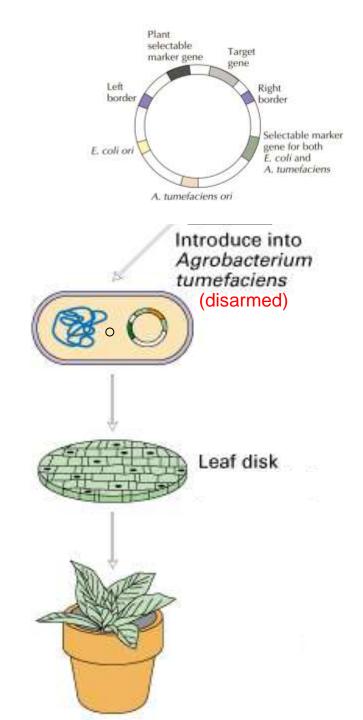
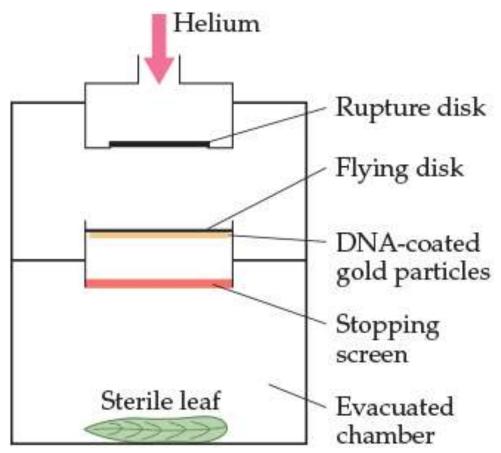
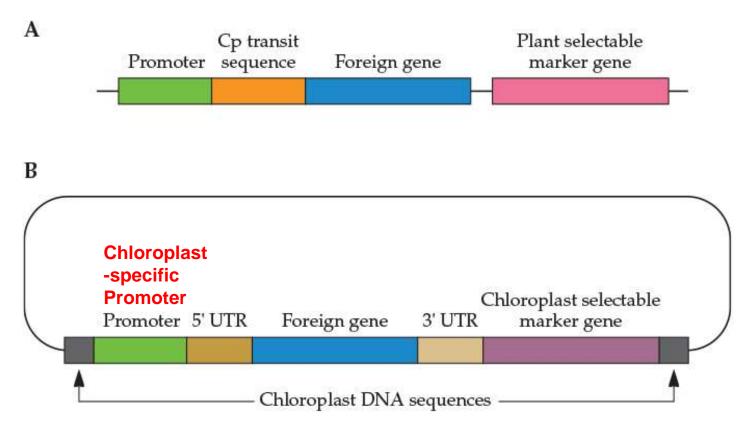



Figure 10.6 Using Microprojectile Bombardment (Biolistics) to shoot genes into plants, either into the plant nuclear genome or the plant chloroplast genome.



Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Figure 10.8 A. Gene constructions for:

A. Expression of a foreign (or target) gene in the nucleus and targeting of the foreign protein to the chloroplast and

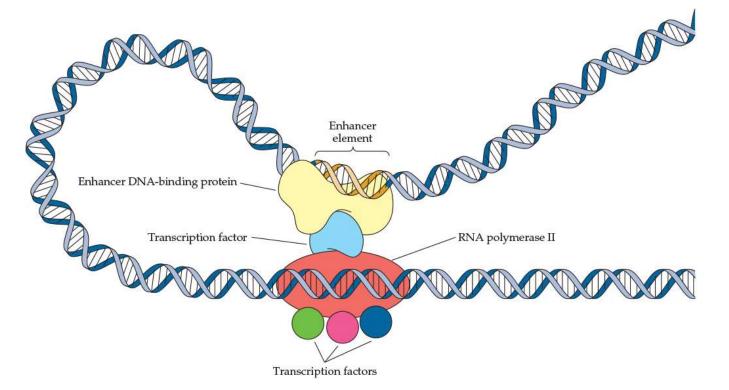
B. Expression of a foreign (or target) gene in the chloroplast

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Table 10.5 Plant cell reporter and selectable marker gene systems

Table 10.5

Enzyme activity	Selectable marker	Reporter gene
Neomycin phosphotransferase	Yes	Yes
Hygromycin phosphotransferase	Yes	Yes
Dihydrofolate reductase	Yes	Yes
Chloramphenicol acetyltransferase	Yes	Yes
Gentamicin acetyltransferase	Yes	Yes
Nopaline synthase	No	Yes
Octopine synthase	No	Yes
β-Glucuronidase	No	Yes
Streptomycin phosphotransferase	Yes	Yes
Bleomycin resistance	Yes	No
Firefly luciferase	No	Yes
Bacterial luciferase	No	Yes
Threonine dehydratase	Yes	Yes
Metallothionein II	Yes	Yes
enol-Pyruvylshikimate-3-phosphate synthase	Yes	No
Phosphinothricin acetyltransferase	Yes	Yes
β-Galactosidase	No	Yes
Blasticidin S deaminase	Yes	Yes
Acetolactate synthase	Yes	No
Bromoxynil nitrilase	Yes	No
Green fluorescent protein	No	Yes

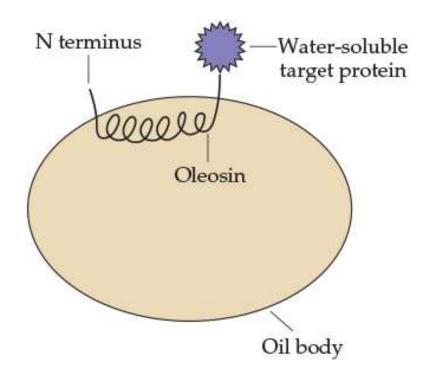

http://www.youtube.co m/watch?v=SI2PRHG pYuU

Adapted from Walden and Schell, Eur J Biochem 192:563–576, 1990, and Gruber and Crosby, p. 89–119, in B. R. Glick and J. E. Thompson (ed.), Methods in Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, FL, 1993).

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Figure 10.14 When expressing a target gene in plants, one needs to consider which plant promoter/enhancer sequence to use as this will determine where, when, and how much mRNA (and protein) is produced.

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

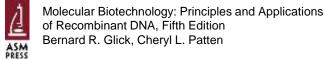
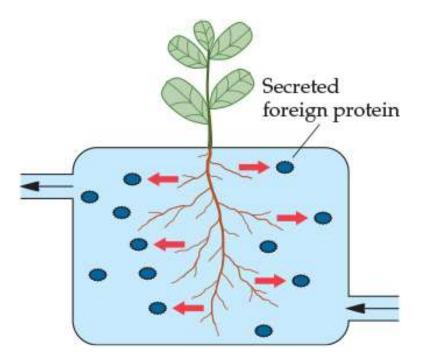

Manipulation of gene expression in plants: Choosing the right promoter/enhancer sequences to express your target gene

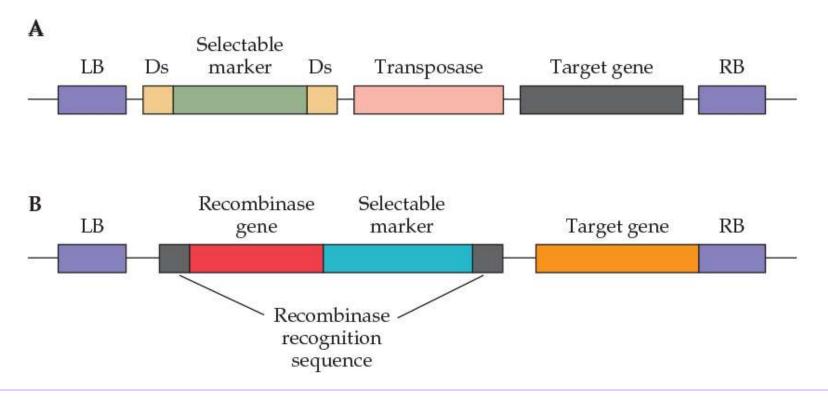
- Strong, constitutive promoters (35S Cauliflower mosaic virus promoter or 35S CaMV or 35S)
- Organ and tissue specific promoter (e.g., the leaf-specific promoter for the small subunit of the photosynthetic enzyme ribulosebisphosphate carboxylase or rbc)
- Promoterless reporter gene constructs to find new organand tissue-specific promoters
- Inducible promoters (Dex or dexamethasone)
- Synthetic promoters

Other DNA modules or genes to consider adding when expressing your target gene in plants

- Protein affinity tag sequences to facilitate purifying your target protein from plants (e.g., c-myc, FLAG, 6xHis, olesins [oil body proteins])
- Protease recognition sequences to remove affinity tags
- Signal peptide sequences to facilitate secretion of your target protein outside the cell (e.g., Rhizosecretion or secretion of your target protein by plant roots by using a a signal peptide sequence along with a root-specific promoter and growing the transgenic plant hydroponically (your target protein will be secreted into the hydroponic growth media)
- Cellular targeting sequences (nucleus, cell wall, ER, Golgi, mitochondria, chloroplasts, etc.)
- Genes which modify or inhibit certain plant protein glycosylation reactions to produce therapeutic glycoproteins with more humanlike glycosylation

Figure 10.16 Fusing your target protein to oleosin (an oil body protein) to facilitate target protein purification.


Figure 10.17 Expressing your target protein for secretion by the roots in a hydroponic system by a process called "rhizosecretion"

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fifth Edition Bernard R. Glick, Cheryl L. Patten

Figure 10.21 Removal of selectable marker sequences to produce "Marker-Free Transgenic Plants" to address potential human, animal, or environmental safety concerns. This can be done using A. A transposase gene and Ds elements surrounding the selectable marker or B. A recombinase gene and recombinase recognition sequences surrounding the selectable marker and the recombinase gene.

ASM