Dynamic Programming

- Dynamic programming (DP) is ideally suited for sequential decision problems.
- DP is a mathematical technique well suited for the optimization of multistage decision problems.
- Developed by Richard Bellman in the early 1950's.
- Applications :
 - Reservoir operation, water allocation, capacity expansion, irrigation scheduling, water quality control, shortest route problems etc.
 - · State of the system
 - Current position, speed and orientation of Missile and Target.
 - Decision: Speed and orientation for the Missile during next time interval.
 - Objective: To hit the Target in minimum time.

Representation of DP problem:

· Single stage decision problem

- Serial multi-stage decision problem
 - Output from one state is input to the next

Bellman's principle of optimality:

- "Given the current state of system, the optimal policy (sequence of decisions) for the remaining stages is independent of the policy adopted in the previous stages".
- The principle implies that, given the state S_i of the system at a stage i, one must proceed optimally till the last stage, irrespective of how one arrived at the state S_i.

Stage-wise optimization: S_1

Stage1

 $\longrightarrow \bigcup_{V} S_{1}$

Stage 2

 $S_1' = T(S_2, X_2)$ State transformation: A function of state variable S_2 and decision X_2 .

Al Anbar University Water Resources Management & Economics Mr. Ahmed A. Al Hity College of Engineering 4th Stage Lecture No: 6 Water Resources and Dams Dept. 2019-2020 Date: Thu.08/04/2020

Water allocation problem:

- A total of 6 units of water is to be allocated optimally to three users, User 1, User 2 and User 3.
- The allocation is made in discrete steps of one unit ranging from 0 to 6.

 The returns obtained from the users for a given allocation are as follows

Amount of water	Return from					
allocated	User 3	User 2	User 1			
Ø ∨	$R_3(x)$	$R_2(x)$	$R_1(x)$			
0	0	0	0			
1	5	5	7			
2	8	6	12			
3	9	3	15			
4	8	-4	16			
5	5	-15	15			
6	0	-30	12			

 S_1 : Amount of water available for allocation to User 1

 x_1 : Amount of water allocated to User 1

 x_1^* : Allocation to User 1, that results in $f_1^*(S_1)$

 $f_1^*(S_1)$: Maximum return due to allocation

S_1	x_1	$R_1(x_1)$	$f_1^*(S_1) = \operatorname{Max}[R_1(x_1)]$	x_1^*
0	0	0	0	0
	0	0	7	4
1	1	7	7	1
	0	0)	Mar	
2	1	7 9	12	2
	2	12		
	0	0)	A .	
	1	7 >-	M . <	_
3	2	12 (15	3
	3	15		
	0	0		
	1	7		
4	2	12	16	4
	3	15		
	4	16		
	0	0		
	1	7		
5	2	12	4 16	4
	3	15	P 16	
	4	16		
	5	15		
	0	0		
	1	7		
	2	12		
6	3	15	16	4
	4	16		
	5	15		
	6	12		

Al Anbar University Water Resources Management & Economics Mr. Ahmed A. Al Hity College of Engineering 4th Stage Lecture No: 6 Water Resources and Dams Dept. 2019-2020 Date: Thu.08/04/2020

$$f_{2}^{*}(S_{2}) = \text{Max} \left[R_{2}(x_{2}) + f_{1}^{*}(S_{2} - x_{2}) \right]$$

$$0 \le x_{2} \le S_{2}$$

$$0 \le S_{2} \le Q$$

S₂: Amount of water available for allocation to User 2 and User 1 together

 x_2 : Amount of water allocated to User 2

 S_2 – x_2 : Amount of water available for allocation at stage 1 (to User 1)

 $f_2^*(S_2)$: Maximum return due to allocation of S_2

 x_2^* : Allocation to User 2, that results in $f_2^*(S_2)$

Stage 2

 $f_2^*(S_2) = \operatorname{Max} \left[R_2(x_2) + f_1^*(S_2 - x_2) \right]$ $0 \le x_2 \le S_2 ; 0 \le S_2 \le Q$

	,				<u> </u>	$\leq S_2, 0 \leq$	22 2
S_2	<i>x</i> ₂	$R_2(x_2)$	$S_2 - x_2$	$f_1^* \left(S_2 - x_2 \right)$	$R_2(x_2) + f_1^*(S_2 - x_2)$	$f_2^*(S_2)$	x_2^*
0	0	0	0	0	0	0	0
	0	0	1	7	7 ZN	1 ^{0 °} 7	_
1	1	5	0	0	5 (,	0_
	0	0	2	12	12		
2	1	5	1	7	12	12	0, 1
	2	6	0	0	6		
	0	0	3	15	15		
	1	5	2	12	17	47	
3	2	6	1	7	13	17	1
	3	3	0	0	3		
S_2	x_2	$R_2(x_2)$	$S_2 - x_2$	$f_1^*(S_2-x_2)$	$R_2(x_2) + f_1^*(S, -x_2)$	$f_2^*(S_2)$	x *
	0	0	4	16	16		
	1	5	3	15	20		
4	2	6	2	12	19	20	1
	3	3	1	7	10		
	4	-4	0	0	-4		
	0	0	5	16	16		
	1	5	4	16	21		
_	2	6	3	15	21	24	4.2
5	3	3	2	12	15	21	1, 2
	4	-4	1	7	3		
	5	-15	0	0	-15		
	0	0	6	16	16		
	1	5	5	16	21		
	2	6	4	16	22		
6	3	3	3	15	18	22	2
	4	-4	2	12	8		
	5	-15	1	7	-8		
	6	-30	0	0	-30		

$$f_3^* (S_3) = \operatorname{Max} \left[R_3 (x_3) + f_2^* (S_3 - x_3) \right]$$
$$0 \le x_3 \le S_3$$
$$S_3 = Q$$

 S_3 : Amount of water available for allocation to User 1, User 2 and User 3 together = 6 units

 x_3 : Amount of water allocated to User 3

 S_3 – x_3 : Amount of water available for allocation at stage 2 (to User 1 and User 2 together)

 $f_3^*(S_3)$: Maximum return due to allocation of S_3

 x_3^* : Allocation to User 3, that results in $f_3^*(S_3)$

$$f_{3}^{*}(S_{3}) = \operatorname{Max}\left[R_{3}(x_{3}) + f_{2}^{*}(S_{3} - x_{3})\right]$$

$$0 \le x_{3} \le S_{3}$$

$$S_{3} = Q$$

S_3	<i>x</i> ₃	$R_3(x_3)$	$S_3 - x_3$	$f_2^* \left(S_3 - X_3 \right)$	$R_3(x_3) + f_2^*(S_3 - x_3)$	$f_3^*(S_3)$	x_3^*
	0	0	6	22	22		
	1	5	5	21	26		
	2	8	4	20	28	Mar	
6	3	9	3	17	26 (28	2
	4	8	2	12	20		
	5	5	1	5	10		
	6	0	0	0	0		

 When the third stage is solved, all the three users are considered for allocation; thus the total maximum return is

$$f_3^*(6) = 28$$

The allocations to individual users are traced back.

From the table for stage 3,

$$x_{3}^{*}=2$$

From this the water available for stage 2 is obtained as,

$$S_2 = Q - x_2^* = 6 - 2 = 4$$

From the table for stage 2, with the value of S_2 = 4,

$$x_2^* = 1$$

From this the amount of water available for allocation at stage 1 is obtained as,

$$S_1 = S_2 - x_2^* = 4 - 1 = 3$$

From the table for stage 1, with the value of $S_1 = 3$,

$$x_1^* = 3$$

Thus the optimal allocations are

 x_1^* = Allocation to User 1 = 3 units

 x_2^* = Allocation to User 2 = 1 units

 x_3^* = Allocation to User 3 = 2 units

Maximum return resulting from the allocations = 28

Al Anbar University Water Resources Management & Economics Mr. Ahmed A. Al Hity College of Engineering 4th Stage Lecture No: 6 Water Resources and Dams Dept. 2019-2020 Date: Thu.08/04/2020

Dynamic Programming

Reservoir operation problem:

- Operating policy: Amount of release from the reservoir during a period (e.g., a month, a season etc.), for a given storage level at the beginning of that period.
- Stage: Time period (e.g., month) for which decisions are required.
- State variable: Storage at the beginning of a stage.
- Decision variable: Release from the reservoir during a period.

State transformation:

Storage continuity (Mass balance)

$$S_{t+1} = S_t + Q_t - R_t$$
 Neglecting losses

where S_t : Storage at the beginning of period t

 Q_t : Inflow during period t

 R_t : Release during period t

Dynamic Programming Lust

 $B_t(R_t)$: Benefits associated with release R_t in period t

$$0 \le S_t \le S_{max}$$
 $\forall t$ Tablew during S_{max} : Reservoir capacity $\forall Q_t$ known

Example:

- Inflows during four seasons to a reservoir with storage capacity of 4 units are 2, 1, 3 and 2 units respectively.
- Overflows from the reservoir are also included in the release.
- Reservoir storage at the beginning of the year is 0 units.

 Release from the reservoir during the season results in the following benefits which are same for all the four seasons.

Release	Benefits
/ 0	-100
/ 1 \	250
2	320
3	480
4	520
5	520
6 /	410
7	120

 To obtain the release policy backward recursive equation is used, starting with the last stage.

$$S_1 = 0$$

$$t = 1$$

$$n = 4$$

$$t = 2$$

$$n = 3$$

$$S_2$$

$$t = 3$$

$$n = 2$$

$$n = 1$$

$$S_3$$

$$Trogress of computations$$

Stage 1:

$$Q_4 = 2 t = 4 and n = 1$$

$$f_4^1(S_4) = \operatorname{Max}\left[B_4(R_4)\right]$$

$$0 \le R_4 \le (S_4 + Q_4) \text{we have } S_4 + Q_4 - R_4 \le 4 \text{Max. Storage}$$

Water Resources Management & Economics Mr. Ahmed A. Al Hity Al Anbar University 4th Stage **College of Engineering Lecture No: 6** Water Resources and Dams Dept. Date: Thu.08/04/2020 2019-2020

$Q_4 = 2$	عصميم		100000000000000000000000000000000000000	
S_4	R_4	$B_4(R_4)$	$f_4^1(S_4) = \operatorname{Max}[B_4(R_4)]$	R_4^*
	0	-100 ^		
0	1	250	Map: 320	2
	(2)	320		7
	0	-100		
1	1	250	400	2
1	2	320	480	3
	3	480		
	0	-100		
	1	250		
2	2	320	520	4
	3	480		
	4	520		
	1	250		
	2	320		
3	3	480	520	4,5
	4	520		
	5	520		
	2	320		
	3	480		
4	4	520	520	4,5
	5	520		
	6	410		

Stage 2:

$$Q_3 = 3$$

$$Q_3 = 3$$

$$t = 3 \text{ and } n = 2$$

$$f_3^2(S_3) = \text{Max} \left[B_3(R_3) + f_4^1(S_3 + Q_3 - R_3) \right]$$

$$0 \le R_3 \le (S_3 + Q_3)$$

$$S_3 + Q_3 - R_3 \le 4$$

$$Q_3 = 3$$

$$f_3^2(S_3) = \text{Max} \left[B_3(R_3) + f_4^1(S_3 + Q_3 - R_3) \right]$$

$$0 \le R_3 \le (S_3 + Q_3); S_3 + Q_3 - R_3 \le 4$$

$Q_3 = 3$	3				3)	$0 \le R_3 \le (S_3 +$			_
S_3	R_3	$B_3(R_3)$	$\begin{array}{c c} S_3 + Q_3 \\ -R_3 \end{array}$	$f_4^1(S_3 + Q_3 -$	-R _s)	$B_3(R_3) + f_4^1(S_3 + Q_3 - R_5)$	$f_3^2(S_3)$		R_3^*
	0	-100	3	520		420			
	1	250	2	520		770	000		
0	2	320	1	480		800	800	2	2, 3
	3	480	0	320		800			
	0	-100	4	520		420			
	1	250	3	520		770			
1	2	320	2	520		840	960		3
	3	480	1	480		960			
	4	520	0	320		840			
S ₃	R_3	$B_3(R_3)$	$S_3 + Q_3 - R_3$	$f_4^*(S_3+Q-R_3)$	B_3	$(R_3) + f_4^4(S_3 + Q - R_3)$	$f_3^2(S_3)$)	R_3^*
	1	250	4	520		770			
	2	320	3	520		840			
2	3	480	2	520		1000	1000		3, 4
	4	520	1	480		1000			
	5	520	0	320		840			
	2	320	4	520		840			
	3	480	3	520		1000			
3	4	520	2	520		1040	1040		4
	5	520	1	480		1000			
	6	410	0	320		730			
	3	480	4	520		1000			
	4	520	3	520		1040			
4	5	520	2	520		1040	1040		4, 5
	6	410	1	480		890			
	7	120	0	320		440			

Stage 3: $Q_2 = 1$ t = 2 and n = 3 $f_2^3(S_2) = \text{Max} \left[B_2(R_2) + f_3^2(S_2 + Q_2 - R_2) \right]$ $0 \le R_2 \le (S_2 + Q_2)$ $S_2 + Q_2 - R_2 \le 4$

 $f_2^3(S_2) = \text{Max} \left[B_2(R_2) + f_3^2(S_2 + Q_2 - R_2) \right]$ $Q_2 = 1$ $0 \le R_2 \le (S_2 + Q_2)$ $S_2 + Q_2 - R_2 \le 4$

					222 -		
S_2	R_2	$B_2(R_2)$	$S_2 + Q_2 - R_2$	$f_3^2(S_2+Q-R_2)$	$B_2(R_2) + f_3^2(S_2 + Q_2 - R_2)$	$f_2^3(S_2)$	R_2^*
0	0	-100	1	960	860	1050	1
U	1	250	0	800	1050	1030	'
	0	-100	2	1000	900		
1	1	250	1	960	1210	1210	1
	2	320	0	800	1120		
	0	-100	3	1040	940		
2	1	250	2	1000	1250	1280	2 2
	2	320	1	960	1280	1200	2, 3
	3	480	0	800	1280		
	0	-100	4	1040	940		
	1	250	3	1040	1290		
3	2	320	2	1000	1320	1440	3
	3	480	1	960	1440		
	4	520	0	800	1320		
	1	250	4	1040	1290		
	2	320	3	1040	1360		
4	3	480	2	1000	1480	1480	3, 4
	4	520	1	960	1480		
	5	520	0	800	1320		

Stage 4:

$$Q_1 = 2$$

$$t = 1$$
 and $n = 4$

$$f_{1}^{4}(S_{1}) = \operatorname{Max}\left[B_{1}(R_{1}) + f_{2}^{3}(S_{1} + Q_{1} - R_{1})\right]$$

$$0 \leq R_{1} \leq (S_{1} + Q_{1})$$

$$S_{1} + Q_{1} - R_{1} \leq 4$$

$$f_{1}^{4}(S_{1}) = \operatorname{Max}\left[B_{1}(R_{1}) + f_{2}^{3}(S_{1} + Q_{1} - R_{1})\right]$$

$$0 \leq R_{1} \leq (S_{1} + Q_{1})$$

$$S_{1} + Q_{1} - R_{1} \leq 4$$

$$Q_1 = 2$$

S_1	R_1	$B_1(R_1)$	$S_1 + Q_1 - R_1$	$f_2^3\left(S_1 + Q_1 - R_1\right)$	$B_{1}(R_{1}) + f_{2}^{3}(S_{1} + Q_{1} - R_{1})$	$f_1^4(S_1)$	R_1^*
	0	-100	2	1280	1180		
0	1	250	1	1210	1460	1460	1
	2	320	0	1050	1370		7

_ S2

Trace back:

$$R_1^* = 1$$
 From last table

$$S_2 = S_1 + Q_1 - R_1^*$$
$$= 0 + 2 - 1 = 1$$

$$R_2^* = 1$$
 From stage-3 table, corresponding to $S_2 = 1$

$$S_3 = S_2 + Q_2 - R_2^*$$

= 1 + 1 - 1 = 1

$$R_3^* = 3$$
 From stage-2 table, corresponding to $S_3 = 1$

$$S_4 = S_3 + Q_3 - R_3^*$$

= 1 + 3 - 3 = 1

 $R_4^* = 3$ From stage-1 table, corresponding to $S_4 = 1$

- The optimal release sequence for the problem is {1, 1, 3, 3} during the four periods.
- The maximum net benefits that result from this release policy is 1460 units.

Dynamic Programming

Shortest route problem:

Consider the problem of determining the shortest route for a pipeline from among various possible routes available from destination to source.

| State State

Progress of computations

State S_n : node in stage nDecision S_n : node in the previous stage S_n -1 from which the node S_n is reached.

Stage 1:

$$f_1^*(S_1) = \min[d(x_1, S_1)]$$

S_1	x_1	$f_1^*(S_1) = \min[d(x_1, S_1)]$	x_1^*
B_1	10	10	A
B_2	15	15	A
B_3	12	12	A

Stage 2:

$$f_2^*(S_2) = \min \left[d(x_2, S_2) + f_1^*(x_2) \right]$$

Al Anbar University Water Resources Management & Economics Mr. Ahmed A. Al Hity College of Engineering 4th Stage Lecture No: 6 Water Resources and Dams Dept. 2019-2020 Date: Thu.08/04/2020

$$f_2^*(S_2) = \min[d(x_2, S_2) + f_1^*(x_2)]$$

S_2	x_2	$d(x_2, S_2)$	$f_1^*(x_2)$	$d(x_2, S_2) + f_1^*(x_2)$	$f_2^*(S_2)$	x_2^*
	B_1	8	10	18		
C_1	B_2	9	15	24	18	B_1
	B_3	7	12	19		
	B_1	12	10	22		
C_2	B_2	11	15	26	22	B_1
	B_3	15	12	27		
	B_1	19	10	29		
C_3	B_2	13	15	28	26	B_3
	B_3	14	12	26		

Stage 3:

$$f_3^*(S_3) = \min[d(x_3, S_3) + f_2^*(x_3)]$$

$$f_3^*(S_3) = \min \left[d(x_3, S_3) + f_2^*(x_3) \right]$$

S_3	<i>x</i> ₃	$d(x_3, S_3)$	$f_{2}^{*}(x_{3})$	$d(x_3, S_3)$	$f_3^*(S_3)$	x_3^*
	C_1	8	18	$+f_2^*(x_3)$ 26		3
D_1	C_2	9	22	29	26	C_1
1	C_3	7	26	33		•
	C_1	12	18	30		
D_2	C_2	11	22	33	30	C_1
	C_3	15	26	41		
	C_1	19	18	37		
D_3	C_2	13	22	35	35	C_2
	C_3	14	26	40		

Stage 4:

$$f_4^*(S_4) = \min[d(x_4, S_4) + f_3^*(x_4)]$$

$$f_4^*(S_4) = \min \left[d(x_4, S_4) + f_3^*(x_4) \right]$$

S_4	<i>x</i> ₄	$d(x_4, S_4)$	$f_3^*(x_4)$	$d\left(x_4, S_4\right) + f_3^*\left(x_4\right)$	$f_4^*(S_4)$	x_4^*
	D_1	9	26	35		
E	D_2	6	30	36	35	D_1
	D_3	12	35	47		

Trace back:

$$x_4^* = D_1$$
 From last table

$$x_3^* = C_1$$
 From stage-3 table, corresponding to $S_3 = D_1$

$$x_2^* = B_1$$
 From stage-2 table, corresponding to $S_2 = C_1$

$$x_1^* = A$$
 From stage-1 table, corresponding to $S_1 = B_1$

Shortest distance = 35 units