Water Quality Management

- ◆ Critical component of overall IWRM
- ◆ Water bodies serve many uses
 - transport and assimilation of wastes
 - assimilative capacities can be exceeded WRT intended uses
- ◆ Water quality management measures
 - Standards
 - minimum acceptable levels of ambient water quality
 - Actions
 - insure pollutant load does not exceed assimilative capacity while maintaining quality standards
 - Treatment
 - not an option for irrigation water or maintaining natural aquatic ecosystems (bathing, fish and other organisms)

Water Quality Management Process

- ◆ Identify Problem
- ◆ Identify Indicators and Target Values
- ◆ Assess Source(s)
- ◆ Determine Linkages Between Targets and Sources
- ◆ Allocate Loads
- Monitor and Evaluate
- **♦** Implement

Water Uses

Use	Typical quality parameters
Public Water Supply	Turbidity, total dissolved solids, health-related inorganiz and organic compounds, microbial quality
Water contact recreation	Turbidity, bacterial quality, toxic compounds
Fish propagation and wildlife	Dissolved oxygen, chlorinated organic compounds
Industrial water supply	Suspended and dissolved constituents
Agricultural water supply	Sodium content, total dissolved solids
Shellfish harvesting	Dissolved oxygen, bacterial quality

Irrigation Use Total dissolved Solids

Classification	TDS (mg/L)	Elec Cond. (micromhos/cm)
No adverse effects	< 500	< 750
Adverse effect on sensitive crops	500 – 1000	750 – 1,500
Adverse effects on most crops	1,000-2,000	1,500-7,000
No effect on tolerant crops	2,000-5,000	3,000-7,000
Little value for irrigation	> 5000	

Municipal Wastewater

	В	After 2ndary	
Variable	Average	Range	Average
Daily flow (Gal/cap)	125	100-200	
Solids (mg/L)	800	450-1200	530
Volatile	400	250-800	220
Disolved	500	300-800	20
Suspended	300	100-400	30
BOD5 (mg/L)	180	100-450	30
Nitrogen (mg/L)	50	15-100	
Organic N	20	5-35	
Ammonia N	28	10-60	
Nitrite+Nitrate	2	0-6	
Phosphate (mg/L)	50	10-50	
Coliform (mln/100 ml)	30	2-50	
Fecal Coliforms	4	0.3-17	

Fish and Aquatic Life

Characteristic	Warm Water Biota	Cold Water Biota	Marine and Estuary
рН	6-9	6-9	6.7-8.5
Alkalinity	<20 mg/L	< 20 mg/L	
Incr. in T (°F)	< 5	< 5	< 1.5
Turbidity	50	10	
Change in Salinity			10%
Coliform			< 70/ 100 ml

Models

◆ Advection + dispersion

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} (D \frac{\partial C}{\partial x}) - \frac{\partial VC}{\partial x}$$

♦ Where

 $C = concentration (M/L^3)$

 $V = Average \ velocity \ in \ reach \ (L/T)$

D = Longitudinal dispersion (L2/T)

Steady-state Model

♦ Steady-state

- Where k = decay rate (1/T)

$$0 = D \frac{\partial^2 C}{\partial x^2} - V \frac{\partial C}{\partial x} - kC$$

Solution is

$$C(x) = \begin{cases} \frac{W}{Qm} e^{\frac{V}{2D}(1+m)x} & x < 0 \text{ (backward)} \\ \frac{W}{Qm} e^{\frac{V}{2D}(1-m)x} & x \ge 0 \text{ (forward)} \end{cases}$$

where

- W = loading (M/T) at x = 0

$$C(0) = \frac{W}{Qm} \qquad m = \sqrt{1 + \frac{4kD}{V^2}}$$

Steady-state w/o Dispersion

Example1:

- ◆ Wastewater containing constituent *C* is being discharged at four sites
- ◆ maximum allowable concentrations
 of the constituent C are specified at each of those discharge sites
- estimate the necessary reduction in

these discharges

- ◆ Divide the river into reaches
- ◆ Each reach: constant *A*,*D*, *k*, and *v*

- lacklosh Find the waste removal efficiencies (x1, x2) that meet the stream quality standards at sites 2 and 3 at minimum total cost. W1 and W2 are the amounts of pollutant prior to treatment at sites 1 and 2.
- Without treatment, the concentration of pollutant, P_j mg/l, at sites j = 2 and 3 will continue to exceed the maximum desired concentration P_j max

- \bullet P_j = pollutant concentration in the stream at site j
- lacklosh Total mass per unit time of the pollutant (M/T) in the stream at site j will be its concentration P_{i} (M/L3) times the streamflow O_{i} (L3/T)
- ◆ Each unit of pollutant mass at site 1 will decrease as it travels downstream to site 2. Similarly each unit of pollutant mass at site 2 will decrease as it travels downstream to site 3.
- lack The fraction a12 of mass at site 1 that reaches site 2 is assumed to be:

$$a_{1,2} = \frac{1}{mQ} e^{\frac{V}{2E}(x_2 - x_1)(1 - m)}$$

◆ Similarly for mass at site 2 traveling to site 3

$$a_{2,3} = \frac{1}{mQ} e^{\frac{V}{2E}(x_3 - x_2)(1 - m)}$$
 $a_{1,3} = a_{1,2} a_{2,3}$

Determine Transfer Coefficients

- ◆ To determine the transfer coefficients *a*12 and *a*23 requires concentration measurements at sites 1, 2 and 3 during design streamflow conditions
- ◆ Concentrations must be measured just downstream of the site 1 discharge, just upstream and downstream of the site 2 discharge, and at site 3

$$P_2^- = a_{1,2} P_1^+$$
 $P_3^- = a_{2,3} P_2^+$

- ◆ Assume five pairs of sample pollutant concentration measurements have been taken in the two stream reaches during design flow conditions
- ◆ assume that the design streamflow just downstream of site 1 and just upstream of site 2 are the same and equal to 12 m3/s
- \bullet SP1s = sample measurement s in the 1st reach (downstream of site 1)
- \bullet SP2s = sample measurement s in the 2nd reach (upstream of site 2)
- lacktriangle Es = error

$$SP_{2,s}^{-} + E_s = a_{1,2}SP_{1,s}^{+} \left(\frac{Q_1}{Q_2}\right)$$

,

Minimize
$$\sum_{s} |E_s|$$

Subject to

$$E_s = a_{1,2} S P_{1,s}^+ \left(\frac{Q_1}{Q_2}\right) - S P_{2,s}^-$$
 $\forall s$

- ◆ If the absolute value signs can be removed, we will have an LP model
- ◆ Write each error term as the difference between two non-negative variables

$$E_s = PE_s - NE_s$$

$$PE_s \ge 0, \text{ and } NE_s \ge 0$$
If $E_s \begin{cases} < 0 & PE_s = 0, \text{ and } -NE_s = E_s \\ > 0 & PE_s = E_s, \text{ and } NE_s = 0 \end{cases}$

◆ Objective function - minimize the sum of the positive and negative components of *Es*

Minimize
$$\sum_{s} (PE_s + NE_s)$$

Subject to

$$PE_{s} - NE_{s} = a_{1,2}SP_{1,s}^{+} \left(\frac{Q_{1}}{Q_{2}}\right) - SP_{2,s}^{-} \qquad \forall s$$

$$PE_{s} \ge 0, \text{ and } NE_{s} \ge 0 \qquad \forall s$$

GAMS Code for Example

```
Water Resources Management & Economics Mr. Ahmed A. Al Hity
Al Anbar University
                                         4<sup>th</sup> Stage
College of Engineering
                                                                        Lecture No: 9
Water Resources and Dams Dept.
                                        2019-2020
                                                                   Date: wed.29/04/2019
Scalar Q1 /12/;
 Scalar Q2 /12/;
 SETS s /1*5/;
 Parameter SP1(s) /1 232, 2 256, 3 220, 4 192, 5 204/;
 Parameter SP2(s) /1 55, 2 67, 3 53, 4 50, 5 51/;
 POSITIVE VARIABLES
 PE(s), NE(s);
 VARIABLES
 obj, a12;
 EQUATIONS objective, error(s);
 objective.. obj =E= SUM(s,( PE(s)+NE(s) ) );
 error(s).. PE(s)-NE(s) = E = a12*SP1(s)*(Q1/Q2)-SP2(s);
MODEL Calibrate / ALL /;
 SOLVE Calibrate USING LP MINIMIZING obj;
 FILE res /Calibrate.txt/;
                                           a_{12} = 0.25, a_{23} = 0.60, and
 PUT res
                                          a_{12} a_{23} = a_{13} = 0.15
PUT "obj = ", PUT obj.1,PUT /;
 PUT "a12 = ", PUT a12.1, PUT /;
                                          Minimize C_1(x_1) + C_2(x_2)
Minimize C_1(x_1) + C_2(x_2)
                                          Subject to
Subject to
                                                \frac{[P_1Q_1 + W_1(1-x_1)]a_{12}}{Q_2} \le P_2^{\max}
         P_2 = \frac{\left[P_1 Q_1 + W_1 (1 - x_1)\right] a_{12}}{O_2}
                                              \frac{\left[P_{1}Q_{1}+W_{1}(1-x_{1})\right]a_{13}+\left[W_{2}(1-x_{2})\right]a_{23}}{Q_{3}} \leq P_{3}^{\max}
         P_3 = \frac{\left[P_2 Q_2 + W_2 (1 - x_2)\right] a_{23}}{Q_3}
                                                 0 \le x_i \le 1 i = 1, 2
         P_i \leq P_j^{\text{max}} j = 2,3
         0 \le x_i \le 1 i = 1, 2
```

param	eter	unit	value	remark
	Q_{\parallel}	m ³ /s	10	flow just upstream of site I
flow	Q_2	m ³ /s	12	flow just upstream of site 2
	Q_3	m ³ /s	13	flow at park
waste	w ₁ w ₂	kg/day kg/day	250,000 80,000	pollutant mass produced at site 1 pollutant mass produced at site 2
pollutant conc.	P ₁ P ₂ P ₃	mg/l mg/l mg/l	32 20 20	concentration just upstream of site I maximum allowable concentration upstream of 2 maximum allowable concentration at site 3
decay fraction	a ₁₂ a ₁₃ a ₂₃	 	0.25 0.15 0.60	fraction of site 1 pollutant mass at site 2 fraction of site 1 pollutant mass at site 3 fraction of site 2 pollutant mass at site 2

 $Minimize \quad C_1(x_1) + C_2(x_2)$

Subject to

$$x_1 \ge 0.8$$

$$x_1 + 1.28 x_2 \ge 1.79$$

$$0.0 \le x_i \le 1.0$$
 $i = 1, 2$

c1 and c2 are the average cost per unit (percent) removal for 80% treatment

Example2:

- **♦** Irrigation project
 - 1800 acre-feet of water per year
 - Crop A, needs 3 AF/acre, \$300/acre, 400 acres max
 - Crop B, needs 2 AF/acre, \$500/acre, 600 acres max
- **◆** Decision variables
 - $-x_A = acres \ of \ Crop \ A \ to \ plant$
 - $-x_B = acres \ of \ Crop \ B \ to \ plant$

Maximize
$$Z = 300 x_A + 500 x_B$$

Subject to

$$x_A \le 400$$

$$x_B \le 600$$

$$3x_A + 2x_B \le 1800$$

$$x_A \ge 0 \quad x_B \ge 0$$

Z=1000=300xA +500xB

GAMS Code

POSITIVE VARIABLES xA, xB;

VARIABLES

obj;

EQUATIONS objective, xAup, xBup, limit;

objective.. obj =E = 300 * xA + 500 * xB;

xAup.. xA = L = 400.;

xBup.. xB = L = 600.;

limit.. 3*xA+2*xB = L = 1800;

MODEL Calibrate / ALL /;

SOLVE Calibrate USING LP MAXIMIZING obj;

Display xA.l, xA.m;

Display xB.l, xB.m;

GAMS Output

	LOWER	LEVEL	UPPER	MARGINAL
EQU objective EQU xAup EQU xBup EQU limit	e . -INF -INF -INF		400.000 600.000 1800.000	
240	LOWER	LEVEL	UPPER	MARGINAL
VAR xA		200.000	+INF	
VAR xB	•	600.000	+INF	
VAR obj	-INF	3.6000E+5	+INF	

Marginals

- ◆ Marginal value, Dual price, Shadow price, Lagrange multiplier
 - Marginal for a constraint = the change in the objective per unit increase in RHS of that constraint.
 - i.e., change xB $x_B \le 600$ $x_B \le 601$
 - Marginal for that equation is 300, so expect objective to increase to 360,300

New Solution

LOWER LEVEL UPPER MARGINAL

```
---- EQU objective . . . 1.000

---- EQU xAup -INF 199.333 400.000 .

---- EQU xBup -INF 601.000 601.000 300.000

---- EQU limit -INF 1800.000 1800.000 100.000
```

LOWER LEVEL UPPER MARGINAL

Note: Adding 1 unit to xB adds 300 to the objective, but constraint 3 says

$$3x_A + 2x_B \le 1800$$

and this constraint is "tight" (no slack) so it holds as an equality, therefore xA must decrease by 1/3 unit for xB to increase by a unit.

Example3: Assume that here are two sites along a stream, i = 1, 2, at which waste (BOD) is discharged. Currently, without any wastewater treatment, the quality (DO), P2 and P3, at sites 2 and 3 is less than the minimum desired, P_2^{max} and P_3^{max} , respectively. For each unit of waste removed at site i upstream of site j, the quality improves by aij. How much treatment is required at sites 1 and 2 that meets the standards at a minimum cost? Following are the necessary data:

Ci = cost per unit of waste treatment at site i (both C1 and C2 are unknown but for the same amount of treatment, whatever that amount, C1 > C2)

Wi = the amount of waste to be treated at sites 1 and 2

xi = decision variables, unknown waste removal fractions at sites 1 and 2

$$a_{12} = 1/20$$
 $W_1 = 100$ $P_2^{\text{max}} = 6$
 $a_{13} = 1/40$ $W_2 = 75$ $P_3^{\text{max}} = 4$
 $a_{23} = 1/30$ $P_2 = 3$ $P_3 = 1$

Minimize
$$\sum_{i=1}^{2} C_i x_i$$

subject to

$$q_j - \sum_{i=1}^{2} a_{ij} W_i x_i \ge Q_j \qquad j = 2,3$$

$$0 \le x_i \le 1 \qquad i = 1, 2,3$$

Minimize $C_1x_1 + C_2x_2$ subject to

$$\begin{aligned} 3 + \frac{1}{20}(100)x_1 &\geq 6 \ or \ x_1 \geq 0.6 \\ 3 + \frac{1}{40}(100)x_1 + \frac{1}{30}(75)x_2 &\geq 4 \ or \ x_1 + x_2 \geq 1.2 \\ 0 &\leq x_1 \leq 1 \\ 0 &\leq x_2 \leq 1 \end{aligned}$$

