

Consumer's Budget

• Consumers choose best bundles of goods they can afford on budget of m

- **Consumer's Problem**
 - Consumer's Problem Maximize u(x) subject to

$$p \cdot x \le m$$
$$x \ge 0$$

- **Lagrangian** $L(x, \lambda) = u(x) + \lambda \left(m \sum_{k=1}^{K} p_k x_k \right)$
 - **Optimality conditions** $\frac{\partial L}{\partial x_k} = \frac{\partial u}{\partial x_k} \lambda p_k = 0, \quad k = 1, ..., K$ $\frac{\partial L}{\partial \lambda} = m \sum_{k=1}^{K} p_k x_k = 0$

$$\frac{MU_k}{p_k} = \frac{\frac{\partial u}{\partial x_k}}{p_k} = \lambda \qquad k = 1, \dots, K$$

The consumer chooses purchases such that the ratio of marginal benefit $\lambda = \frac{\partial u}{\partial m}$ (marginal utility) to marginal cost (price) is equal among all purchases

$$\frac{MU_1}{p_1} = \frac{MU_2}{p_2} = \dots = \frac{MU_K}{p_K} = \lambda$$

The ratio, with units of \$/unit of commodity or (shadow) price, is the Lagrange multiplier, the change in utility for a change in income

• For 2 goods

$$\frac{\partial u}{\partial x_1} - \lambda p_1 = 0$$

$$\frac{\partial u}{\partial x_2} - \lambda p_2 = 0$$

$$m - (p_1 x_1 + p_2 x_2) = 0$$
Since $= -\frac{p_1}{p_1}$

Slope of budget line

$$bope = -\frac{p_1}{p_2}$$
$$bope = \frac{dx^2}{dx^1} = -MRS_{12}$$

Slope of indifference curve Slop

DEMAND FUNCTION

Quantity, x

Value

- Value worth, utility, or importance of something
 - Contribution to life support functions or commercial/recreational opportunities
 - Beauty
 - Uniqueness
 - Reducing environmental or human health risks
 - Irreplacability
 - Role in supporting wildlife
 - Providing many other services that benefit humans.
- Ecosystem values
 - Measures of how important ecosystem services are to people What they are worth?

Willingness-to-Pay

- Value What is someone willing to pay?
- Suppose farmer willing to pay for water:
 - First unit: \$38
 - Second unit: \$26
 - Third unit: \$17
 - And so on
- If we charge
 - $p^* = \$10$
 - Farmer will purchase 4 units for \$40
 - But farmer is *willing to pay* \$93
 - Farmer's Consumer surplus is \$53

Measuring Benefits w/Market

- Need information on prices and quantities
- Derive demand curve
- Quantify willingness-to-pay
- Use WTP to represent benefits

Market Prices - Revealed WTP

- The values of some goods or services (including ecosystem services) can be measured using market prices.
 - Products traded in markets (e.g., fish, wood)
 - Values can estimated from consumer and producer surplus, as with any other market goods.
 - Ecosystem services used as inputs in production (e.g., clean water)
 - Value can be estimated from contribution to profits made from the final good.

- Some services (including ecosystem or environmental) may not be directly bought and sold in markets
- However, the prices people are willing to pay in markets for related goods can be used to estimate their values
 - People often pay a higher price for a home with an ocean view, or will take the time to travel to recreational places
 - These kinds of expenditures can be used to place a lower bound on the value of the view or the recreational experience.

Methods using Market Prices

Estimate economic value of products, services, sites that ...

- are bought and sold in commercial markets (Market Price Method)
 Commercial fishery & water pollution
- contribute to the production of commercially marketed goods (Productivity Method)
 - *Reservoir holding Drinking water polluted by agricultural runoff*
- directly affect market prices of some other good (Hedonic Pricing Method)
 - variations in housing prices that reflect the value of local environmental attributes
- are used for recreation (Travel Cost Method)
 - Assumes that the value of a site is reflected in how much people are willing to pay to travel to visit the site

Circumstantial Evidence:

Imputed WTP

- The value of some services can be measured by
 - estimating what people are willing to pay, or
 - the cost of actions they are willing to take to avoid adverse effects that would occur if these services were lost, or
 - to replace the lost services
- Example
 - Wetlands often provide protection from floodwaters.
 - \$\$ that people pay to avoid flood damage in areas similar to those protected by the wetlands
 - This can be used to estimate WTP for the flood protection services of the wetland

Methods using Circumstantial Evidence

- Estimate economic values based on costs of
 - avoided damages from lost services,
 - replacing ecosystem services, or
 - providing substitute services
- Examples
 - Improved water quality
 - Value = measure cost of controlling emissions
 - Erosion protection services of a forest or wetland
 - Value = cost of removing eroded sediment
 - Fish habitats
 - Value = cost of fish breeding and stocking programs

Surveys - Expressed WTP

- Many services are not traded in markets, and are not closely related to any marketed goods
- People cannot "reveal" what they are willing to pay for them through their market purchases or actions
- Methods
 - Contingent Valuation Method (CVM)

- Ask people to directly state their WTP for specific services, based on a hypothetical scenario
- Contingent Choice Method (CCM)
 - Ask people to make tradeoffs among sets of services or characteristics
 - Does not directly ask for WTP this is inferred from tradeoffs that include cost as an attribute

Summarizing – Measuring Benefits w/o Market

- Prices may not exist
- Demands may not be revealed, and
- Change in benefits over time may be extremely uncertain,
- For example
 - Benefits of preserving space for recreation
 - Benefits from damages prevented due to pollution controls
- Sometimes
 - Damages of pollution can be identified and estimated
 - Surveys determine willingness-to-pay for environmental preservation, damage reductions, lower risks, etc
 - Survey results infer values (benefits)

Why estimate *ecosystem* values?

- To decide how to allocate spending on conservation, preservation, or restoration initiatives
- To consider stakeholder values, and encourage stakeholder participation and support for initiatives
- To compare benefits of different projects or programs
- To prioritize projects

Types of ecosystem values

- Use values ("active use" values)
 - Based on actual use of the environment
 - Hunting, fishing, hiking, etc.
- Non-use values ("passive use" values)
 - Not associated with actual use of, or even an option to use, an ecosystem or its services
 - Existence value (River preservation)
 - Option value
 - value of having the option to enjoy in the future

- Bequest value
 - value of knowing future generations will have the option to enjoy

Measures of Ecosystem Values

- Relative "value" of two things
 - Maximum amount of one thing a person is willing to give up to get more of another thing
- Ecosystem values
 - How much purchasing power people
 - are willing to give up to get it
 - or would need to be paid to give it up, if they were forced to make a choice
 - This situation may never occur in the "real world".

Challenges of Ecosystem Valuation

- Non-Market Goods
 - Most environmental goods (e.g., clean air and water, and healthy fish and wildlife populations) are not traded in markets and their value is not revealed in prices
- Public Goods
 - Many environmental goods can be enjoyed by everyone (similar to broadcast radio and television)
- Non-exclusive Goods
 - Many environmental benefits are non-exclusive (everybody benefits)
 - Free rider problem makes it impractical to recoup cost of on-site investments from those who benefit off-site
- Inseparable Goods
 - Investments at a given site may result in benefits over great distances in time and space
 - It may be impossible to separate the economic benefits that result from one conservation practice from those at another site
 - Also, it may be impossible to separate the aggregate benefits of those practices from those of other environmental investments