<u>Semester I (2018-2019)</u>

Course Description:

Functions, Limits and continuity, Differentiation, Applications of derivatives, Integration, Inverse functions. Applications of the Integral

Recommended Textbook(s):

Calculus, Early Transcendental By James Stewart, 6th Edition, 2008, Brooks/Cole

Prerequisites: None

Course Topics:

1. **Functions and models**: four ways to represent a function , mathematical models: a catalogue of essential functions , new functions from old functions , exponential functions, inverse functions and logarithms

2. **Limits**: the tangent and velocity problems. The limit of a function, calculating limits using the limit laws. Continuity, limits at infinity, horizontal asymptote. Infinite limits, vertical asymptotes. derivatives and rates of change

3. **Differentiation rules:** Differentiation of Polynomials. The Product and Quotient Rules. Derivatives of Trigonometric Functions. The Chain Rule, Implicit Differentiation. Related Rates, Indeterminate forms and l'hospital's rule.

7. **Applications of differentiation**: maximum and minimum values. The mean value theorem. How derivatives affect the shape of a graph. Summary of curve sketching. Optimization problems. Antiderivatives.

10.**Integrals**: the definite integral. The fundamental theorem of calculus. The indefinite integral and net change theorem. The substitution rule.

11. **Applications of integrals**: areas between curves. Volumes. Volumes by cylindrical shells. Average value of a function.

12.**Exponential and logarithmic functions**. Derivative and integrals involving logarithmic functions. Inverse functions. Derivative and integrals involving exponential functions. Derivative and integrals involving inverse trig functions. Hyperbolic functions.

Program and Course Outcomes:

- 1. Evaluate Limits of functions using various techniques including L'Hopital's Rule
- 2. Discuss the continuity functions
- 3. Identify the properties of inverse functions and their derivatives
- 4. Find the derivative of algebraic, trigonometric, exponential, and logarithmic functions
- 5. Sketch the graph of a function using the information for the first and second derivatives
- 6. Solve problems involving applications of derivatives including, related rates and optimization
- 7. Identify the definition and properties associated with definite integrals
- 8. Solve problems using the Fundamental Theorem of Calculus
- 9. Evaluate integrals using the method of substitution

10. Solve problems involving applications of integrals including finding volume of solids of revolution and area between curves

Selected References

- 1 Advanced Engineering Mathematics, Kreyszig
- 2 Advanced Engineering Mathematics, Wyle
- 3 Further Engineering Mathematics, Stroud.
- 4 Engineering Mathematics, Kandasamy.
- 5 Advanced Engineering Mathematics, Gustafson
- 6 Elementary Differential Equations, Boyce.
- 7 Numerical Analysis, Burden.
- 9 Calculus by Thomas & Finney.

Semester I (2018-2019)

Calculus I By Group of Calculus I Phase: 1

Examples of functions

- A. The most useful representation of the area of a circle as a function of its radius is probably the algebraic formula $A = \pi r^2$
- B. The vertical acceleration of the ground as measured by a seismograph during an earthquake is a function of the elapsed time. Figure below shows a graph generated by seismic activity during the Northridge earthquake that shook Los Angeles in 1994. For a given value of the graph provides a corresponding value of a.

So, function is y = f(x), expressing y as a dependent variable on f and x is an independent variable.

For example f(x) = 2x-1

If x = 1 then 2*1-1 = 1 X= -1 then 2 *-1-1 = -3

And so on

If an absolute value like f(x) = |x| then $x = \begin{cases} x & x \ge 0 \\ -x & x \le 0 \end{cases}$

<u>Semester I (2018-2019)</u>

Note:

|-a| = |a| |ab| = |a| |b| |a/b| = |a|/|b| but $b \neq 0$ |a+b| = |a|+|b|

2. Domain and Range

We usually consider functions for which the sets D and E are sets of real numbers. The set D is called the domain of the function. The number f(x) is the value of f at x and is read "f of x" The range of f is the set of all possible values of f(x) as varies throughout the domain.

Then domains and ranges of many functions are intervals of real numbers.

Semester I (2018-2019)

Example5: Find the domain and range of the following functions:

(a) f(x) = 2x - 1(b) $f(x) = x^2$ (c) $f(x) = \tan x$ (d) $y = \sqrt{x}$ (e) $y = \frac{x - 12}{x^2 - 5x + 6}$

Solution

(a) f(x) = 2x - 1

Domain: $\mathbf{x} = \mathbf{R} - \infty \le x \le \infty$

Range f(x) = R R: denotes as all real number

(b) $f(x) = x^2$

Domain: $\mathbf{x} = \mathbf{R} - \infty \le x \le \infty$

Range f(x) = R

(C) f(x) = tan x

Domain: x = R excluding $\pm \frac{\pi}{2}, \pm 3\frac{\pi}{2}, \pm 5\frac{\pi}{2}, \dots$

(d) $f(x) = \sqrt{x}$

Domain $0 \le x$ and Range $0 \le y$

(e)
$$y = \frac{x - 12}{x^2 - 5x + 6}$$

The denominator not equal to zero

 $x^2 - 5x + 6 = 0$

(x-3)(x-2) then domain all but $x\neq 3$ and $x\neq 2$

2. Sketch of functions

The points in the plane whose (x,y) are the input and output pairs of a function make up the graph of the function.

Definition: Even function: if f(x) = f(-x)Odd function: if f(x) = -f(-x)

Example6: sketch the function y = x+2

Solution:

Х	0	1	2	 -1	-2
у	2	3	4	 1	0

Example7: sketch the power function $y = x^2$

Solution:

Х	0	1	2	 -1	-2
У	0	1	4	 1	4

Semester I (2018-2019)

Notes: if n is odd then symmetric about origin and pass through (1,1) and (-1,-1)

if n is even then symmetric about y axis and pass through (1,1) and (-1,1) if the power is negative then $y=1/x^n$

like y= $1/x^3$, 1/x

Graph of $y=1/x^3$

Example8: Find the domain and range then sketch the function $y = \sqrt{4-x}$

Solution

Domain : $4 - x \ge 0$ then $x \le 4$

Range y≥ 0

<u>Semester I (2018-2019)</u>

2. Polynomials

The general form is

 $K_n x^n + K_{n-1} x^{n-1} + K_{n-2} x^{n-2} + \dots + K_1 x + K_0$

Ex: $x^3 + 5x^2 + 3$ $x^5 - x^3 + x^{0.5}$ etc.

The graph is

Example8: sketch the function $f_{(x)} = (x-2)(x+1)$

Solution

 $f_{(x)} = y = x^2 + x - 2x - 2$

 $y = x^2 - x - 2 \qquad \qquad y = ax^2 + bx + c$

The vertex = x= -b/2a , $x = -(-1)/2^{*}1 = \frac{1}{2}$ y = $(1/2)^2 - 1/2 - 2 = -9/4$

vertex (1/2, -9/4)

points of intercept

at x=0 y = -2at y=0 0 = (x-2)(x-1)

 $\begin{array}{ll} x=2 & (2,0) \\ x=-1 & (-1,0) \end{array}$

2. Trigonometric functions

Sine	sinx = a/c
Cosine	$\cos x = b/c$
Tangent	tanx = a/b = sinx/cosx

Cotangent	$\cot x = b/a = \cos x/\sin x$
Secant	$\sec x = c/a = 1/\cos x$
Cosecant	csecx = c/a = 1/sinx

Semester I (2018-2019)

Identities

	Trigonometric Identities – part 1										
Reciprocal	Identities	Half Angle	Identities	Double Angle Identities	Pythagoras Identities						
$\sin\theta = \frac{1}{2}$	$\csc\theta = \frac{1}{\sin\theta}$	(θ)	$1 - \cos \theta$	$\sin(2\theta)=2\sin\theta\cos\theta$	$sin^2\theta + cos^2\theta = 1$						
csc θ	$\sin\theta$	$\sin\left(\frac{1}{2}\right) = \pm$	2	$\cos(2\theta) = \cos^2\theta - \sin^2\theta$	$1 + tan^2\theta = sec^2\theta$						
$\cos\theta = \frac{1}{2}$	$\sec \theta = \frac{1}{2}$	(0)	$1 + \cos \theta$	$=2cos^2\theta$ -1	2						
sec θ	$\sec\theta = \frac{1}{\cos\theta}$	$\cos\left(\frac{1}{2}\right) = \pm$	2	$= 1 - 2sin^2\theta$	$1 + cot^2\theta = csc^2\theta$						
		(0)			Even/Odd Identities						
$\tan\theta=\frac{1}{\cot\theta}$	$\cot\theta = \frac{1}{\tan\theta}$	$\tan\left(\frac{\theta}{2}\right) = \frac{1}{2}$	$\pm \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$	$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$	$\sin(-\theta) = -\sin\theta$						
Sum to Pro	oduct Identities		Product t	o Sum Identities	$\cos(-\theta) = \cos\theta$						
$\sin \alpha + \sin \beta =$	$2\sin\left(\frac{\alpha+\beta}{2}\right)co$	$s\left(\frac{\alpha-\beta}{2}\right)$	$\sin \alpha \sin \beta =$	$\frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)$	$\tan(-\theta) = -\tan\theta$						
$\sin \alpha - \sin \beta =$	$2\cos\left(\frac{\alpha+\beta}{2}\right)si$	$n\left(\frac{\alpha-\beta}{2}\right)$	$\cos \alpha \cos \beta =$	$=\frac{1}{2}[\cos(\alpha-\beta)+\cos(\alpha+\beta)]$	$\csc(-\theta) = -\csc \theta$						
$\cos \alpha + \cos \beta =$	$= 2\cos\left(\frac{\alpha+\beta}{2}\right)c$	$ps\left(\frac{\alpha-\beta}{2}\right)$	$\sin \alpha \cos \beta =$	$\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)$	$\sec(-\theta) = \sec \theta$						
$\cos \alpha - \cos \beta =$	$=-2sin\left(\frac{\alpha+\beta}{2}\right)$	$sin\left(\frac{\alpha-\beta}{2}\right)$	$\cos \alpha \sin \beta =$	$\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)$	$\cot(-\theta) = -\cot\theta$						

Graphs:

(a) $f(x) = \sin x$

(b) $g(x) = \cos x$

3. Exponential functions

The exponential functions are the functions of the form $f(x) = a^x$, where the base a is a positive constant.

If we choose the base a so that the slope of the tangent line tangent line to the y = ax at (0,1) is exactly. In fact, there is such a number and it is denoted by the letter e. e =2.71828

Semester I (2018-2019)

llustrative example: Graph the function $y = \frac{1}{2}e^{-x} - 1$ and state the domain and range.

Solution We start with the graph of $y = e^x$ from Figure below, and reflect about the y-axis to get the graph of $y = e^{-x}$ in . Figure (b). (Notice that the graph crosses the y-axis with a slope of -1). Then we compress the graph vertically by a factor of 2 to obtain the graph of $y = \frac{1}{2}e^{-x}$ in Figure (c). Finally, we shift the graph downward one unit to get the desired graph in Figure (d). The domain is **R** and the range is $(-1, \infty)$.

4. Power functions

A function of the form $f(x) = x^a$, where is a constant, is called a power function. We consider several cases.

Semester I (2018-2019)

5. Logarithmic functions

The logarithmic function $f(x) = \log_a$, where a is a positive constant, are the inverse function of the exponential functions. In each case the domain is(0, ∞) and the range is (- ∞ , ∞) and the function increases slowly when x>1.

Example9: Classify the following functions as one of the types of functions that we have discussed.

(a)
$$f(x) = 5^x$$

(b) $g(x) = x^5$
(c) $h(x) = \frac{1+x}{1-\sqrt{x}}$
(d) $u(t) = 1 - t + 5t^4$

Solution

- (a) $f(x) = 5^x$ is an exponential function. (The *x* is the exponent.)
- (b) $g(x) = x^5$ is a power function. (The *x* is the base.) We could also consider it to be a polynomial of degree 5.
- (c) $h(x) = \frac{1+x}{1-\sqrt{x}}$ is an algebraic function.
- (d) $u(t) = 1 t + 5t^4$ is a polynomial of degree 4.

NATURAL LOGARITHMS

The logarithm with base is called the **natural logarithm** and has a special notation:

Х	y= lnx
0	8
1	0
2	0.693
3	1.098
4	1.386
5	1.609
-1	∞
0.9	-0.105
0.5	-0.693
0.2	-1.609
0.1	-2.302

<u>Semester I (2018-2019)</u>

6. Algebra of functions

Let f is a function of x then we get f(x) and g is a function of x also we get g(x)

Df is the domain of f(x)Dg is the domain of g(x)

Then:

 $f+g = f(x) + g(x) \text{ and } Df \cap Dg$ f-g = f(x) - g(x) $f.g = f(x) \cdot g(x)$

and the domain is as same before

if f/g then Df \cap Dg but g(x) \neq 0 if g/f then Dg \cap Df but f(x) \neq 0

and $Df_{\circ}g = \{x: x \in Dg, g(x) \in Df\}$ where

 $f_0g(x) = f(g(x))$ also called the composition of f and g

Example10: Find fog and gof if $f_{(x)} = \sqrt{1-x}$ and $g_{(x)} = \sqrt{5+x}$

Solution

 $(f_{o}g)x = f(g(x)) = f(\sqrt{5+x}) = \sqrt{1-\sqrt{5+x}}$ (1-x) ≥ 0 then x ≤ 1 Df: x ≤ 1 5+x ≥ 0 then x ≥ -5 Dg: x ≥ -5 D f_og = {x: x ≥ -5 , $\sqrt{5+x} \le 1$ } = {x: -5 $\le x \le -4$ }

Example 11: Given F(x) = cos²(x + 9), find functions f, g, and h such that F = f ∘ g ∘ h.
Solution Since F(x) = [cos(x + 9)]², the formula for F says: First add 9, then take the cosine of the result, and finally square. So we let

$$h(x) = x + 9$$
 $g(x) = \cos x$ $f(x) = x^2$

Then

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x + 9)) = f(\cos(x + 9))$$
$$= [\cos(x + 9)]^2 = F(x)$$

Example 12: If $f_{(x)} = \sqrt{x}$ and $g_{(x)} = \sqrt{I-x}$

Find:

f+g, f-g, g-f, f_0g , f/g, g/f then graph f_0g and also f+g.

Solution

$$f_{(x)} = \sqrt{x}$$
 domain $x \ge 0$
 $g_{(x)} = \sqrt{1-x}$ domain $x \le 1$

$$\begin{array}{ll} f+g=(f+g)x=\sqrt{x}+\sqrt{1-x} & \text{domain} & 0 \leq x \leq 1 \text{ or } [0,1] \\ f-g=\sqrt{x}-\sqrt{1-x} & \text{domain} & 0 \leq x \leq 1 \\ g-f=\sqrt{1-x}-\sqrt{x} & \text{domain} & 0 \leq x \leq 1 \\ f_0g=f(x) \ g(x) = f(g(x)) = f(\sqrt{1-x}) = \sqrt{\sqrt{1-x}} = \sqrt[4]{1-x} & \text{domain} & (-\infty, 1] \ (\text{why?}) \end{array}$$

$$f/g = f(x)/g(x) = \sqrt{\frac{x}{1-x}}$$
domain (-∞, 1]
g/f = g(x)/f(x) = $\sqrt{\frac{1-x}{x}}$ domain (0, 1]

Semester I (2018-2019)

Inverse functions

A function that undoes, or inverts, the effect of a function f is called the inverse of f. Many common functions, though not all, are paired with an inverse. In this section we present the natural logarithmic function $y = \ln x$ as the inverse of the exponential function $y = e^x$, and we also give examples of several inverse trigonometric functions.

DEFINITION Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

 $f^{-1}(b) = a$ if f(a) = b.

The domain of f^{-1} is R and the range of f^{-1} is D.

Example 63:

Suppose a one-to-one function y = f(x) is given by a table of values

x	1	2	3	4	5	6	7	8	
f(x)	3	4.5	7	10.5	15	20.5	27	34.5	

A table for the values of $x = f^{-1}(y)$ can then be obtained by simply interchanging the values in the columns (or rows) of the table for f:

у	3	4.5	7	10.5	15	20.5	27	34.5	
$f^{-1}(y)$	1	2	3	4	5	6	7	8	

Note:

Only a one-to-one function can have an inverse

Q: What is the one to one function ?

<u>Semester I (2018-2019)</u>

DEFINITION A function f(x) is one-to-one on a domain D if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ in D.

Note

domain of f^{-1} = range of frange of f^{-1} = domain of f

Example:

two functions have the same values on the smaller domain, so the original function is an extension of the restricted function from its smaller domain to the larger domain.

- (a) $f(x) = \sqrt{x}$ is one-to-one on any domain of nonnegative numbers because $\sqrt{x_1} \neq \sqrt{x_2}$ whenever $x_1 \neq x_2$.
- (b) g(x) = sin x is not one-to-one on the interval [0, π] because sin (π/6) = sin (5π/6). In fact, for each element x₁ in the subinterval [0, π/2) there is a corresponding element x₂ in the subinterval (π/2, π] satisfying sin x₁ = sin x₂, so distinct elements in the domain are assigned to the same value in the range. The sine function is one-to-one on [0, π/2], however, because it is an increasing function on [0, π/2] giving distinct outputs for distinct inputs.

The graph of a one-to-one function y = f(x) can intersect a given horizontal line at most once. If the function intersects the line more than once, it assumes the same y-value for at least two different x-values and is therefore not one-to-one

5 How to Find the Inverse Function of a One-to-One Function *f*

STEP 1 Write y = f(x).

STEP 2 Solve this equation for *x* in terms of *y* (if possible).

STEP 3 To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y = f^{-1}(x)$.

Example 64:

Find the inverse function of $f(x) = x^3 + 2$.

SOLUTION According to (5) we first write

$$y = x^3 + 2$$

Then we solve this equation for x:

$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Finally, we interchange x and y:

$$y = \sqrt[3]{x-2}$$

Therefore the inverse function is $f^{-1}(x) = \sqrt[3]{x-2}$.

Example 65:

Sketch the graphs of $f(x) = \sqrt{-1 - x}$ and its inverse function using the same coordinate axes.

SOLUTION First we sketch the curve $y = \sqrt{-1 - x}$ (the top half of the parabola $y^2 = -1 - x$, or $x = -y^2 - 1$) and then we reflect about the line y = x to get the graph of f^{-1} . (See Figure 10.) As a check on our graph, notice that the expression for f^{-1} is $f^{-1}(x) = -x^2 - 1$, $x \ge 0$. So the graph of f^{-1} is the right half of the parabola $y = -x^2 - 1$ and this seems reasonable from Figure

Semester I (2018-2019)

Calculus I By Group of Calculus I Phase: 1

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Chapter 2. These functions are not one-to-one (their values repeat periodically).

Domain restrictions that make the trigonometric functions one-to-one

Since these restricted functions are now one-to-one, they have inverses, which we denote by

$y = \sin^{-1}x$	or	$y = \arcsin x$
$y = \cos^{-1}x$	or	$y = \arccos x$
$y = \tan^{-1} x$	or	$y = \arctan x$
$y = \cot^{-1} x$	or	$y = \operatorname{arccot} x$
$y = \sec^{-1} x$	or	$y = \operatorname{arcsec} x$
$y = \csc^{-1}x$	or	$y = \operatorname{arccsc} x$

<u>Semester I (2018-2019)</u>

Graph of inverse trig functions

Notes:

To convert from degree to radian

 π radians = 180°

and

1 radian =
$$\frac{180}{\pi}$$
 (\approx 57.3) degrees or 1 degree = $\frac{\pi}{180}$ (\approx 0.017) radians.

Semester I (2018-2019)

TABLE 1.1 Angles measured in degrees and radians															
Degrees	- 180	- 135	- 90	- 45	0	30	45	60	90	120	135	150	180	270	360
θ (radians)	-π	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π

TABLE 1.2 Values of sin θ , cos θ , and tan θ for selected values of θ															
Degrees θ (radians)	-180	-135 $\frac{-3\pi}{4}$		-45 $-\pi$			45 <u>π</u>	60 <u>π</u>	90 <u>π</u>	120 <u>2π</u>	135 <u>3π</u>	150 <u>5π</u>	180 π	270 <u>3π</u>	360 2π
sin θ			-			Ū			-	-	-	U		4	
cos θ		2		2		4	2	2		2	2	$\frac{2}{-\sqrt{3}}$			
tan θ	0	1		-1	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0		0

The "Arc" in Arcsine and Arccosine For a unit circle and radian angles, the arc length equation $s = r\theta$ becomes $s = \theta$, so central angles and the arcs they subtend have the same measure. If $x = \sin y$, then, in addition to being the angle whose sine is x, y is also the length of arc on the unit circle that subtends an angle whose sine is x. So we call y "the arc whose sine is x."

Semester I (2018-2019)

Example 66:

Evaluate (a)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 and (b) $\cos^{-1}\left(-\frac{1}{2}\right)$.

Solution

(a) We see that

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$

because $\sin(\pi/3) = \sqrt{3}/2$ and $\pi/3$ belongs to the range $[-\pi/2, \pi/2]$ of the arcsine function. See Figure 1.68a.

(b) We have

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

because $\cos(2\pi/3) = -1/2$ and $2\pi/3$ belongs to the range $[0, \pi]$ of the arccosine

We can create the following table of common values for the arcsine and arccosine functions

x	$\sin^{-1}x$	$\cos^{-1}x$
$\sqrt{3}/2$	$\pi/3$	$\pi/6$
$\sqrt{2}/2$	$\pi/4$	$\pi/4$
1/2	$\pi/6$	$\pi/3$
-1/2	$-\pi/6$	$2\pi/3$
$-\sqrt{2}/2$	$-\pi/4$	$3\pi/4$
$-\sqrt{3}/2$	$-\pi/3$	$5\pi/6$

Example 67:

Semester I (2018-2019)

Evaluate (a) $\sin^{-1}(\frac{1}{2})$ and (b) $\tan(\arcsin\frac{1}{3})$.

SOLUTION

(a) We have

$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

because $\sin(\pi/6) = \frac{1}{2}$ and $\pi/6$ lies between $-\pi/2$ and $\pi/2$.

(b) Let $\theta = \arcsin \frac{1}{3}$, so $\sin \theta = \frac{1}{3}$. Then we can draw a right triangle with angle θ as in Figure and deduce from the Pythagorean Theorem that the third side has length $\sqrt{9-1} = 2\sqrt{2}$. This enables us to read from the triangle that

$$\tan\left(\arcsin\frac{1}{3}\right) = \tan\theta = \frac{1}{2\sqrt{2}}$$

The cancellation equations for inverse functions become, in this case,

$$\sin^{-1}(\sin x) = x \quad \text{for } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
$$\sin(\sin^{-1}x) = x \quad \text{for } -1 \le x \le 1$$

The inverse sine function, \sin^{-1} , has domain [-1, 1] and range $[-\pi/2, \pi/2]$, and its graph, shown in Figure 20, is obtained from that of the restricted sine function by reflection about the line y = x.

 $y = \sin^{-1}x = \arcsin x$

Example 68:

Simplify the expression $\cos(\tan^{-1}x)$.

SOLUTION 1 Let $y = \tan^{-1}x$. Then $\tan y = x$ and $-\pi/2 < y < \pi/2$. We want to find $\cos y$ but, since $\tan y$ is known, it is easier to find sec y first:

$$\sec^2 y = 1 + \tan^2 y = 1 + x^2$$

$$\sec y = \sqrt{1 + x^2} \qquad (\text{since sec } y > 0 \text{ for } -\pi/2 < y < \pi/2)$$

$$\cos(\tan^{-1} x) = \cos y = \frac{1}{\sec y} = \frac{1}{\sqrt{1 + x^2}}$$

Thus

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to use a diagram. If $y = \tan^{-1}x$, then $\tan y = x$, and we can read from Figure 24 (which illustrates the case y > 0) that

$$\cos(\tan^{-1}x) = \cos y = \frac{1}{\sqrt{1+x^2}}$$

x

The inverse tangent function, $\tan^{-1} = \arctan$, has domain \mathbb{R} and range $(-\pi/2, \pi/2)$. Its graph is shown in Figure

Identities of inverse trig functions

cos⁻¹x

sin⁻¹x

and so on ..