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2. Flexible Pavement

2.1. Analysis of: Stress, Strain and Deflection in Flexible Pavement

A pavement structure is not so easily to accurate structural analysis because the materials
forming the flexible pavement layers and soils supporting the pavement are not same, so
their exhibiting are not similar and their response under loads are different.

2.1.1. One Layer System

Boussinesq (1885) analysed the stresses in flexible pavement as a single layer due to an
applied load based on the assumptions that: the pavement and supporting soils subgrade
below form a homogeneous, isotropic, single elastic layer with the same value of elastic
modulus (E). The first analysis approach represented the load as a point load and then the
load was represented as a circular load which is more realistic than the point load.

2.1.1.1. Point loading

The closed-form solution for a point load on an elastic half-space was originally
developed by Boussinesq (Fig. 2.1.) as shown in the following forms:
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Figure 2.1. Stresses due to point loading

P = Point Load
U = Poisson's Ratio
o, = Vertical normal stress

o, = Radial normal stress (Horizontal)

o, = Tangential normal stress (Horizontal)

7, = Horizontal Shear stress (radial direction)
€, = Vertical normal strain

€, = Radial normal strain (Horizontal)
€; = Tangential normal strain (Horizontal)

V. = Horizontal Shear strain (radial direction)
w = Vertical Deflection
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2.1.1.2. Circular Loading

For pavement analysis, the equivalent circular contact area of a tire on pavement surface is
taken. For this purposes a uniformly loaded circular area Is considered for calculating the
stresses in the soil mass. The equation of vertical stress under point load may be integrated

over the circular area as shown in Figure 2.2.
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Figure 2.2.stresses under uniformly circular loading



» The response due to a circular load with (a) radius a and uniform pressure (g) on an elastic
homogeneous half-space is obtained by integrating the Boussinesq’s components due to a

concentrated load.

» When the load is applied over a single circular loaded area, the most critical stress,
strain, and deflection occur under the center of circular area on the axis of symmetry,
where: 7,, = 0 and o, = o6, SO 6, and ¢, are the principal stresses. For points on the

centerline of the load (i.e., r = 0), these stress components are given by:
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Flexible and Rigid Plates Loading

Flexible Plate: .
The load applied from tire to pavement is similar to a flexible — 2-(_1 — K )qa
plate with a radius (4) and a uniform pressure (g). The deflection E
beneath the center of the plate can be determined from:

Rigid Plate:

All the above analyses are based on the assumption that the load is applied on a

flexible plate, such as a rubber tire . If the load is applied on a rigid plate, such as

that used in a plate loading test, the deflection is the same at all points on the plate,

but the pressure distribution under the plate is not uniform. The differences between

a flexible and a rigid plate are shown in Figure 2.4. -
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Figure 2.4. Differences between flexible and rigid plates.



d A comparison of these two equations indicates that the surface deflection
under a rigid plate is only 79% of that under the center of a uniformly distributed
load (flexible plate). This is reasonable because the pressure under the rigid plate is
smaller near the center of the loaded area but greater near the edge . The pressure
near the center has a greater effect on the surface deflection at the center . The same
factor, 0 .79, can be applied if the plates are placed on a layer system, as indicated
by Yoder and Witczak (1975), as shown in Figure 2.5..
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Figure 2.5. Deflection induced by rigid and flexible plate loading.



2.1.1.3. Methods of Solution

In addition to using the theoretical formulas suggested by Bossinseq’s method (circular
loading method) , there another two methods as explained in the following articles:

2.1.1.3.1. Foster and Ahlvin Charts (Poisson’s ratio is constant = 0.5)

Foster and Ahlvin (1954) presented charts for determining vertical stress o,, tangential stress
o, radial stress o, shear stress t,,, and vertical deflection w, as shown in Eigures 2.6 through
2.10. The load is applied over a circular area with radius (a) and an load intensity (q).
Because Poisson ratio has relatively small effect on stresses and deflections, Foster and
Ahlvin assumed the Poisson’s ratio value 0.5.
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Example 1: Figure (2.11) shows a homogeneous half-space subjected to two circular
loads, each 10 in.(254 mm) in diameter and spaced at 20 in.(508 mm) on centers. The
pressure on the circular area is 50 psi (345 kPa (1 psi=6.9 kPa). The half-space has
elastic modulus 10,000 psi (69 MPa) and Poisson’s ratio 0.5. Determine the vertical
stress, strain, and deflection at point A, which is located 10 in.(254 mm) below the

center of one circle.

: From Figures 2.7, 2.8, and 2.10, the stresses at point *_5}3;’:1_’4 i~
Due to the left load with r/a =0 and z/a = 10/5 = 2 are: 11T FTTTT
6, =0.28 x 50 = 14.0 psi (96 .6 kPa), and ‘ E=10000psi  p=05 |
6,=¢,=0.016 x50 =0.8 psi (5.5 kPa) ; 10
Due to the right load with r/a = 20/5 = 4 and z/a = 2 are: ‘ " 21 i, _4
6,=0.0076 x 50 = 0.38 psi (2 .6 kPa), oA
6,=0.026 x 50 =1.3 psi (9.0 kPa), and Figures 2.11. Example 1.
6, = 0. (Out of the right load’s range).
By superposition: Strain:

0,=14.0+0.38 =14 .38 psi (99.2 kPa), |e=[14.38-0 .5(2.10+ 0.8)/10,000 = 0.00129.
6= 0.8+1.3=2.10 psi (14 .5kPa) ,and | From Figure 2.10, the deflection factor at point A
o, = 0.8 psi (5.5 kPa). due to the left load is 0 .68 and, due to the right
load is0.21 .

The total deflectionw = (0 .68 + 0.21) x 50 x
5/10,000 = 0 .022 in . (0.56 mm) .

The final answer is ¢, = 14.38 psi (99 .2 kPa), ¢,
= 0.00129, and w = 0.022 in . (0.56 mm) 1w,




2.1.1.3.2. Ahlvin and Ulery Tables ( Any value of Poisson’s ratio )

Tables for One-layer Solutions are suggested by Ahlvin and Ulery (1962), to find

stresses, strains, and deflection in one layer system for any value of Poisson’s ratio,
as shown in Figure 2.12 and Tables 2.1. and 2.2.

Figure 2.12. Summary of One-Layer Elastic Equations? {after Ahklvin and Ulery)

Parameter General Case S-P-Ecial Case II:;.( = ﬂ'.fl]
Vertical stress o, = pld 4+ B} {same)
Radial horizontal stress o = pl2ud + C + (1 — 2p)F] ar = pld + C]
Tangential horizontal stress o, = p[2ud — D + (1 — 2p)E] oy = pld — D]
Vertical radial shear stress 7 = 75 = p0 (same)

1+ p L.3p
Vertical strain £ = ’?(—--—} [(1 — 2u)4 + B] &g — B
E E;
1 1.5
Radial horizontal strain ¢ = w [(1 — 2u)F 4 C] & = Lo o
Ey E;
1 1.5
Tangential horizontal strain & = p_[_+_p} [(1 — 2u)E — D)) g = - L)
E] El
: 1+ z 1.5pa { 2 H
Vertical deflection a, = pd + wa -4+ (1 —pH| A =— (—A + —)
.Ei [ .L; @ 2
Bulk stress 8 =0,4 0. + 0y
Bulk strain € = &+ & + &
Wertical tangential shear
stress Tor = Ti: = 0 5 [o e, is principal stress (strain)]
('5': 4= ﬂr} == ‘\/"{U’; = Jr}z + {21‘}, z
Principal stresses ry = 2
dFL — T3
Maximum shear stress Tiex =




Table 2.1. Functio

Function 4

Offzet (r) in Radii

00438

0 0.2 0.4 0.6 0.8 1 1.2 1.5 2 3 4 5 6 8 10 12

1.0 1.0 1.0 1.0 1.0 5 0 0 0 0 0 0 0 0 0

90050 89748 88679 86126 78797 43015 09645 02787 00856 00211 00084 00042

80388 79824 77884 73483 63014 38269 15433 05251 01680 00419 00167 00083 00048 00020

71265 70518 68316 62690 52081 34375 17964 07199 02440 00622 00250

62861 620015 59241 53767 44329 31048 18709 08593 03118

55279 54403 51622 46448 36390 28156 18556 00499 03701 01013 00407 00209 00118 00053 00025 00014

ABS50 47691 45078 40427 33676 25588 17952 10010

42654 41874 39491 35428 20833 21727 (17124 10228 04558

37531 36832 34729 31243 26581 21297 16206 10236
. 33104 32492 30660 27707 23832 .19488 .15253 10094
1 QU289 98763 27005 24607 21468 17868 (14329 09849 05183 01742 00761 00393 00226 00097 00050 00029
L2 23178 22795 21662 (19890 17626 15101 12570 09192 05260 01235 00871 00439 00269 00115
L3 16795 16552 15877 14804 13436 11892 10296 08048 05116 02142 01013 00548 00325 00141 00073 .00043
2 Q0357 10453 10140 09647 09011 08269 07471 06275 04496 02221 01160 00659 00399 00L1B0 00094 00056
25 07152 07098 06047 06698 06373 05974 05555 04880 03787 02143 01221 00732 00463 00214 00115 .0D0OGB
3 05132 05101 05022 (4886 04707 (M4B7 04241 03839 .03150 .01980 .01220 .00770 00505 00242 00132 00079
4 02986 02976 020907 02802 02832 02749 02651 02490 02193 01592 01109 00768 00536 00282 00160 00099
5 01942 01938 01835 DI573 01249 00949 00708 00527 00298 00179 00113
6 01361 01307 LOIIGE 00983 00795 00628 00492 00299 00188 00124
7 01005 00976 00894 00784 DOGGL 00548 00445 00291 00193 .00130
8 00772 00755 00703 00635 .D0554 00472 00398 00276 00189 00134
9 00612 00600 00566 00520 00466 00409 00353 00256 00184 00133
0
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28362
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35777
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iy
538091
J36062
35355
31485
RGO
AT7ERG
12807
487
JOSTOT
08372
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01980
1526
ez

0140
930
26787
32259
.35752
L37031
ST062
7408
36275
34553
307530
25025
JB
12633
09394
566
MET60

Jd1138
L0772
28018
J2748

35323
36508

36072
5153
e 2
A2075

Ja4sl

23358
16644
J2126
09099

05562

13424
23524
483
S2273

33106
32822

1929
30659
29299
27819
24836

L0694

13198
11327
08635
5383

Table 2.2. Function B

Function B

Offset {r) in Radii

(1R:]

JB796
25983
27257
26925
26236
25411
24638
LY
22891
21978
20113
7568
13375
29
L8033
J5145

1 1.2 1.5 2 3 4 3 &
0 0 0 0 0 Q ] 0

05388 —07899 02672 —00845 -.00210 -00034 00042
08513 —07759 — 04448 01593 —00412 00166 00083 —00024
07537 04316 — 04990 02166 -00599 -.00245
2404 - 00766 -(M535 -.02522
13591 02165 -.03455 —02651 —-00991 —00388 00193 00116
4440 04457 02100
4986 06200 -00702 -.02329
15292 07530 00614
5404 0BA07 01795
15355 09210 02814 -01005 —01115 00608 - 00344 —00210
J14915 10007 04378 00023 00995 — 00632 00376 -.00236
373210193 05745 01385 -00669 -.00600 -00401 -.00265
1331 09254 06371 02836 00028 00410 00371 —D0278
09130 07B6D 06022 03429 00661 -.00130 -00271 -.00250
07325 06551 05354 03511 01142 00157 -.00134 00192
04773 04532 03995 03066 001515 00595 00155 00024
03584 02474 01522 00810 00371 00132
12468 01068 01380 00867 00406 00254
M 868 01577 01204 00842 00347 00332
01459 01279 01034 00779 00354 00372
01170 01054 00888 00705 00333 00386

: J00501 003482

N0924 00879 00764 00631

8 10 12 14

0 0 0 0

— 00010

00049 - 00025 - 00014 00009
—00092 —00048 -.00028 -00018
-0107

=~ 00126 00068 -.00040 —00026
-00148 —.00084 00050 -00033
- 0156 -.00094 —00059 —00039
- 00150 00099 - 0065 - 00046
- 00109 -00094 —000GE —00050
00043 - 00070 - 00068 —.00049
L0028 —00037 -.00047 00043
00093 - 00002 —00029  .00037
L0141 00035 ~ 00008 —.000235
00178 DO0GS 00012 00012
00199
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Example 2: Figure (2.13) shows a homogeneous :

half-space subjected to two circular loads, each vevvrvevyyy 0P Wm
12 in. in diameter and spaced at 21 in. on centers. |
The pressure on the circular area is 100 psi. The !
half-space has elastic modulus 9600 psi and ,, )

. , . . ) 9 12—
Poisson’s ratio 0.35. Determine the vertical stress, ‘ |
strain, and deflection at point A, which is located
as shown in figure.

Assume p = 0.35, E = 9600 psi

oA

Find o,, A, @A

Solution: Figure 2.13. Example 2.

For load (L):a=6,z=12,r=9 - z/a=2,r/a=15.
From table A = 0.06275, B =0.06371, C = -0.00782, D =0.05589,



Equivalent Single Wheel load (ESWL)

From Figure ( 2.14), the total load of the dual tire assembly is 2P, with S, being the
center to center spacing and d being the clear distance between tire edges
(d=S,; - 2a,). It is assumed that for the pavement thickness (f) less than or equal to
d/2 (t < d/2), no stress overlap occurs. Thus, the stress depths is due to that of only
one wheel of the dual (P,). Likewise, at depth of approximately 2S,, the effect of
stress overlap is such that it is equivalent to the stress caused by the total load of
the dual tire assembly (2P,). For intermediate depth between d/2 and 2S, the
wheel load acting is linear when plotted on a log load versus log thickness diagram
as shown in Figure (2.15). This relationship can be used to find the ESWL for the
diagram.
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Pd Pd
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d;Z ,!,/.', 'R ¥ ¥ N i/ fComplete stress
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a~]

—— i —— :U

overlap if Ps
pavement thickness
28, is greater than 25,
z=dR2 z z =128,
: Depth z (log scale)
Figure 2.14. Influence of multiple Figure 2.15. Method of determine

wheels on stresses ESWL for any dual wheel loads.



log(ESWL) = log P; + 0.301 log(2z/d)
O = 10 — -

5 &84T T 0g(4S,/d)

Example 3: Find ESWL at depths of 5 cm, 20 cm and 40cm for a dual wheel carrying 2044 kN each.
The center to center tire spacing is 20 cm and distance between the walls of the two tyres is 10 cm.

Solution

At depth z = 40cm, which is twice the tire spacing (25,), ESWL = 2P ;= 2 x 2044 = 4088 k.
For depth, z = 5cm, which is half the distance between walls of the tire (d /2),
ESWL = P = 2044 kN.

For z=20 cm, use the linear relationship: log (ESWL) = 3.511.
Therefore, ESWL = antilog(3.511)= 3244.49 kN

2.1.2. Layard Systems

Flexible pavements are layered systems with better materials on top and cannot be
represented by a homogeneous mass. These layers are subjected to applied stress which
is uniformly distributed over a circular area (radius a) as shown in Figure (2.16). For
this system, the following basic assumptions to be satisfied are :

1. Each layer is: homogeneous, isotropic, linearly elastic , and with an elastic modulus E;
and a Poisson ratio y; (where i for each layer).

2. The material is weightless and infinite in the horizontal direction.

3. Each layer has a finite thickness h, except that for the lowest layer (subgrade) which
has an infinite in thickness .

4. A uniform pressure g is applied on the surface over a circular area of radius a .

5. Continuity conditions are satisfied at the layer interfaces, as indicated by the same
vertical stress, shear stress, vertical displacement, and radial displacement .



22—
q

Layer 2 E,, v, ‘ h, Y J’ " +
Layer 1: Asphalt '
? treated materials E1, s l By

Layer 1 E, v | hy

_,‘,
I

Layer 2: Untreated Materials (either
subgrade, sub-base or both)

Ez, W2

n n

Layer n E . v 1 o
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2.1.2.1. Two-Layer Systems

The two-layer system is a composed of: hot mix asphalt (HMA) layer which is consisted of
surface, binder, and stabilized layers which are treated as a first layer with E; and the
second layer consists of untreated layer (granular material such as base, sub-base, and
subgrade) with E,, as shown in Figure (2.17). (Note: E;>E,)

Vertical Stress

» The vertical stress on the top of subgrade is an important factor in pavement design.
The function of a pavement is to reduce the vertical stress on the subgrade so that
detrimental pavement deformations will not occur. The allowable vertical stress on a
given subgrade depends on the strength or modulus of the subgrade.



 The stresses in a two-layer system depend on the modulus ratio E;/E, and the
thickness-radius ratio h/a . Figure 2.18 shows the effect of a pavement layer on the
distribution of vertical stresses under the center of a circular loaded area . The chart
is applicable to the case when the thickness h, of the top layer is equal to the
radius of contact area, or h;/a =1 and U is assumed to be 0.5 for both layers. It can
be seen that the vertical stresses decrease significantly with the increase in modulus
ratio. For example: at the pavement-subgrade interface (i.e. contact surface between
layer 1 and 2), the vertical stress is about 68% of the applied pressure if E/E,=1,
and when E/E,=100 the vertical stress distribution reduces to about 8% of the
applied pressure.

Vertical stress influence coefficient = op
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Figure 2.17. Vertical stress distribution in a two layers system.



Figure 2.18 shows the effect of pavement thickness and modulus ratio on the vertical stress
6. at the pavement—subgrade interface under the center of a circular loaded area. For a given
applied pressure (, the vertical stress increases with the increase in contact radius and

decreases with the increase in thickness.

Example 4 : A circular load having radius 6
in. (and uniform pressure 80 psi (552 kPa) is
applied on a two-layer system, as shown in
Figure 219 .The subgrade has an elastic
modulus 5000 psi (35 MPa ) and can support
a maximum vertical stress (6.) of 8 psi. If the
HMA has an elastic modulus 500,000 psi,
what is the required thickness of a full-depth
pavement? If a thin surface treatment is
applied( instead of HMA) on a granular base
with an elastic modulus 25,000 psi what is

the thickness of base course required ?

6 in.

80psi |

"4#"!""'”"”’

ol

E, = 500,000 psi
. o, = 8 psi
or 25,000 psi +

E, = 5000 psi
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Figure 2.18. Vertical interface
stresses for two-layer system

Figure 2.19. Example 4



Solution: a) Given E,/E, = 500,000/5000 = 100, and ¢ /g = 8/80 = 0 .1, from Figure 2 .18 , find
a/h, =1 .15, sothe value of h,=6/1.15= 5.2 in ., which represents the minimum thickness for
full depth . b) Given E, /E,= 25,000/5000 =5, and &, /q = 0.1, from Figure 2 .18, for a/h,=0
4, so the value of h, =6/0.4 = 15 in., which is the minimum thickness of granular base required.
Note: compare between the two values of h,

» The allowable vertical stress should depend on the number of load repetitions ,using the
Shell design criterion and the AASHTO equation, Huang et al. (1984b) developed the
relationship: N4 = 4.873 x 1075 g, ~3734E, 383

in which N, is the allowable number of stress repetitions to limit permanent deformation, o,

Is the vertical compressive stress on the surface of the subgrade in psi, and E,is the elastic

modulus of the subgrade in psi.

Example 5: Use the data in example 4 to find the allowable number of repetitions?

Solution: For a stress of 8 psi (5 kPa) and an elastic modulus of 5000 psi (35 MPa), the allowable
number of repetitions is Ny = 3.7 x 10°.

Vertical Surface Deflection: Vertical surface deflections have been used as a criterion of
pavement design. Figure 2.17 can be used to determine the surface deflections for two-layer
systems. The deflection is expressed in terms of the deflection factor F, by :

The deflection factor is a function of E,/E, and h,/a. For a homogeneous half-space with h,/a = 0,
F, =1, so Eq. 2.1 is identical to Equation for flexible plate when p = 0.5 . If the load is applied by

a rigid plate, then, from Eq. 2.2. of rigid plate. w, = 1-1;‘ “r. o
2




Example.5: A total load of 20,000 Ib (89 kN) was
applied on the surface of a two-layer system through
a rigid plate 12 in. in diameter, as shown in
Figure 2 .21. Layer 1 has a thickness of 8 in. and
layer 2 has an elastic modulus of 6400 psi (44.2
MPa). Both layers are incompressible with a
Poisson ratio of 0.5. If the deflection of the plate is
0.1 in. (2.54 mm), determine the elastic modulus

of layer 1.
12 in.
‘__Eﬂ/,[}ﬂl} b Rigid Plate
~ | * ‘I"‘/ Deflects 0.1 in.
E,=? b =os lsm.
E, = 6400 psi B, =05
Figure 2.21. Example 5.
Solution:
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Figure 2.20. Vertical surface deflections for
two-layer systems

The average pressure on the plate is q = 20,000/(36m) = 176.8 psi (1.22 MPa). From Eq. 2 .2,
find the value of F,= 0.1 x 6400/ (1 .18 x 176.8 x 6) = 0.511. Given h,/a= 8/6 = 1.333,
from Figure 2.20, E,/E, =5, or E; =5 x 6400 = 32,000 psi (221 MPa) .



Critical Tensile Strain

The tensile strains at the bottom of asphalt layer have been used as a design criterion to prevent
fatigue cracking. Two types of principal strains could be considered.
1. One is the overall principal strain based on all six components of normal and shear stresses.

2. The other, which is more popular and was used in KENLAYER, is the horizontal principal

strain based on the horizontal normal and shear stresses only.

Note: The overall principal strain is slightly greater than the horizontal principal strain, so the use of
overall principal strain is on the safe side . The critical tensile strain is the overall strain and can

be determined from Eq. 2.3.

e =1 F, where: e is the critical tensile strain and

2.3

Eq F. is the strain factor, which can be determined from the charts .

Strain Factor F,
S

0.1

b

67.7 psi

19(}0?} 1b

y

0.05

L

¥

Y

11

Example 6: Figure 2.23 shows a full-depth asphalt
pavement 8 in. thick subjected to a single-wheel load of
9000 Ib (40 kN) having contact pressure 67.7 psi. If the
elastic modulus of the asphalt layer is 150,000 psi and
that of the subgrade is 15,000 psi, determine the critical
tensile strain in the asphalt layer .

E; = 150,000 psi

0.02

|
'
-li—I
|
1

[

e=7

8in.

0.01
Figure 2 .22.Single Wheel chart for the strain factor
of a two-layer system under a circular loaded area .

E, = 15,000 psi

Figure 2 .23. Example 6.



The figure 2.22 is used for single wheel, in dual wheels,

 The strain factor for dual wheels depends on the parameters: contact radius a, dual spacing S, ,
S4/ a, E,/E, ,and h,/a.

* There are two charts one for dual wheels with Sy = 24 in. (610 mm) and a = 3 in. and the

other for Sy = 24 in. (610 mm) and a = 8 in. to determine conversion factors: C, and C, as shown
in Figure 2.24.
1.6

By 4 % 12 16 o 4 8 12 16
Thickness of Asphalt Layer. in. hickness of Asphalt Layer, in.
Figure 2.24. Conversion factors.

For any other different Sd and da values the following procedure can be used:

1. From the given S, h, , and a, determine the modified radius a' and the modified thickness h," :
24 , _ 24
a = S;ﬂ and M= ?ﬂhl
2. Using h," as the pavement thickness, find conversion factors C, and C, from Figure 2.24.
3. Determine the conversion factor for a' by a straight-line interpolation between 3 and 8 in.

or the formula. C=C+02%(a -3} X (C, - C)



Example 7:

For the same pavement as in Example 6, if the 9000-Ib (40-kN) load is applied over a set of dual
tires with a center-to-center spacing of 11.5 in. and a contact pressure of 67.7 psi ,as shown in
Figure 2 .25, determine the critical tensile strain in the asphalt layer.

451 1b 11.5in. 4500 1b
677 psi o ¥
11‘1|'!L1rr+1r1r1l
I
E, = 150,000 psi 8 in.
L7 4
E; = 15,000 psi

Figure 2 .25. Example 7.

Solution: -
Compute a=4.6in.,h, =8in. from g = ?ﬂ and %= ;:hl
a=24x46/11.5=9 .6in. and h';, =24 x 8/11 .5 =16 .7 in., EJ/E, = 10 and an asphalt
layer thickness of 16 .7 in. from Figure 2.24, C, = 1.42 and C, = 1.46. From interpolation
equation, C=1 42+0.2(9 .6-3) (1 .46 -1 .42) = 1.473 (C is a modified factor to F,
which is found from Figure 2.22). From Figure 2 .22, the strain factor for a single wheel = 0
47 and that for dual wheels = 1.473 x 0 .47 = 0 .692, so the critical tensile strain is:

e=67.7 X0.692/150,000 =3 .12 x 104



2.1.2.2. Three Layers System.

Figure 2 .25 shows a three-layer system and the stresses at the interfaces on the axis of symmetry.
These stresses include vertical stress at interface 1, a,, , vertical stress at interface 2, o,, , radial
stress at bottom of layer 1, o, , radial stress at top of layer 2, 6*,, , radial stress at bottom of layer

2, 6,,, and radial stress at top of layer 3, ¢',, . Note that, on the axis of symmetry, o, - o; and the
sheer stress is equal to 0. When the Poisson ratio is 0.5, we have:

=l . 24 [Tmporaminone | T8
"i-i’_ Uy =My =p3=0.5 X
e, = ﬁ.(ﬂ'r = G,) ceerreeneaiieene 2.5 e B F—i‘l’;;'l . —
\
-E_f — _ZE,. ........................ 2.6 uE :E h
{: —i2- Interface 2
Note: us Es :I ; ! )

» The horizontal strain is equal to one-half of the vertical strain
> To understand these Eqs. 2.4 to 2.6 go back to slides No. 3and 5. F19ure 2.25. Three layers system

Solution Method for Three Layers System Using Jones' Tables
The stresses in a three-layer system depend on the ratios k;, k,, A, and H, defined as

E E ' T~ 0n 29
k, | ky = —2  ceoreereenennnnnneneneneneen 27 04— 0= z
E, E, ,
; 0., — Tp
4=8 g-h 28  Op — Oy = — s —— 2.10



» Jones developed a Tables to determine the stress factors for three-layer systems.

o = q(221)

o, — 0 = q(ZZ1 — RR1) ---

o = q(ZZ2)

T — 0Ty =(q (222 = RRZ)

» Where g is the contact pressure (tire inflation in psi), ZZ1,ZZ2,---- etc. are factors found from

Jones tables.

» The sign convention is positive in
compression and negative in tension .
Four sets of stress factors,ZZ1, ZZ2,
(ZZ1 — RR1), and (ZZ2 — RR2) are
shown in tables. The product of the
contact pressure and the stress factors
gives the stresses. The tables
presented by Jones consist of four
values of k1 and k, (0.2, 2, 20, and
200), so solutions for intermediate
values of k, and k, can be obtained
by interpolation.

~ 23—

q

RERRES

l1=0.5, E; ln,, h,
- ' U Y
- O —— o.' A
| rl
[
H2 =0.5,E ' i3
on
€ —a T > Y
e cc=d e 3 o’ .
| e e
l3=0.5,E3 |

Interface 1

Interface 2

Figure 2 .26. Detailed stresses in three layers system.



From Figure 2.26. it can be observed, that the presence of friction has a significant influence
on the radial (horizontal) stress at the bottom of the top layer especially at low values for the
ratio E,/E,. We also note that the influence on the vertical stress is much smaller.

If there is full friction or full bond at the interface, the following conditions are satisfied:

» The vertical stress just below and above the interface are equal because of
equilibrium, so:

o,, at the bottom of the top layer (1) = ¢,, at the top of the bottom layer (2) (interface 1)
o,, at the bottom of the top layer (2) = o,, at the top of the bottom layer (3) (interface 2)

» The horizontal displacements just above and below the interface are the same
because of full friction, so:

g,, at the bottom of the top layer (1) = &7, at the top of the bottom layer (2) (interface 1)
(6,,=0",, atinterface 1)

g, at the bottom of the top layer (2) = ¢°,, at the top of the bottom layer (3) (interface 2)
(6,,=0", at interface 2)

> The vertical displacements just above and below the interface are the same because
of continuity, so:

g, at the bottom of the top layer (1) = ¢,,at the top of the bottom layer (2) (interface 1)
g,, at the bottom of the top layer (2)= ¢,,at the top of the bottom layer (3) (interface 2)



Example 8:

Given the three-layer system shown in Figure 2 .27 18_1

with a = 122 mm, q = 828 kPa, hl = 152 mm), h2 120 psi |

= 6 in. (203 mm), E1 = 400,000 psi (2.8 GPa), E2 IREAR

= 20,000 psi (138 MPa), and E3 = 10,000 psi (69 o0 ! F
MPa), determine all the stresses and strains at the ' | Jom
two interfaces on the axis of symmetry . E, = 20,000 psi l all o, 6= ? [6in.

E, = 10,000 psi | %

Figure 2 27. Example 8.

Solution:
Given k, = 400,000/20,000 = 20, k ,= 20,000/10,000=2, A=4.8/6 =0 .8,and H=6/6 = 1,
from Table ( ) Find the factors: , ZZ1 =0 .12173, ZZ2 = 0 .05938, ZZ1 - RR1 = 1 .97428,
and ZZ2 - RR2 =0.09268 .

From Eq. 2 .11, 6,, =q x ZZ1 =120 x 0.12173 = 14.61 psi (101 kPa)

FromEq. 2 .12 0,, = q x ZZ1 = 120 x 0 .05938 = 7.12 psi (49.1 kPa)

From Eq. 2 .13 0,, -0,;, =9 % (ZZ1-RR1) =120 x 1.97428 = 236.91 psi (1 .63 MPa), and
o, = 14.61-236.91 = -222.31 psi.

FromEq.2 .14 0,, -0,,=q % (ZZ2-RR2) =120 % 0.09268 = 11.12 psi,

O, = 1.12—-11.12 = -4.0 psi P > .

From Equations 2.9 and 2.10. a1 — o =""p— "R e = (o ma) 23
G =276 psi, 6 ,=1.56 psi Tp = Op

(T;.Z _ Url — reasasssarersasnsrsarasnannes A €, =

k>




E= 1.0
ky = 20,0

By iii ‘5{‘5& 'if‘;. uE. ';;‘51 'E;*Eh
kg = 0.2

@sI | 0s004I7 004050 0.00303 04002371 0.00039 ©0.00Ig%
0e3 | oso1b41 #-lsﬁfi 0s00734 o.01080 u.nuigg 0. 00777
04| o.o0baze o.55%54 003777 0s 04341 oe 006 os.03033
o8 G 31057 I.%53667 0.07681 0. 15303 o« 03158 S L-T-1-1
1.6 | o0e582183  3.77359 0.13858 o0.4970¢ 0.06337 o0.3161%
1.2 t.0b39f  2.55195 0.12760 1.00317 0.00900 0.4053%

k= 2,0

0. 00361 ﬁ-n4?:: 0s00213 os00I00 ocs.00150 o.ooode
0.01039 0.18481

0.00024 0s00397 ©O.00b6317 0.00319

0.203%
o.66041  Bag7505 0.33385  o0.53398  o0.6544 0. 33733

ky = 20,0

©:00I83 ©0.05737 ©.002387 ©.00034 ©0.00332 OS.00016
0s3 | ©s00750 0433413  o.0r1I31 0. 000 0«01383 o.o0064
04 | 0.0371% 083430 oe04l31 os00387 os05063 0.002%53
0s8 | o0s0B027 2.50672 o.13083 o.01507 n.;z:ﬁ? 0. 009 E
1.8 | o.17961 6S.97014 0.33851 005549 ©0.66326 o.0332

3.3 0. 34355 IS.33353 o.76163 0. 181344 1.88634 ©e09433

kg = 200.0

0:00176 ©0.0%5737 ©0.00137 ©0.00000 ©0.00478 o0.00003
03 | o.00683 0.36400 0.01330 ©0.00033 o.o0lgod  o.o000l0
n.z nuu:4;1 0s.9873:6 CsB4GLT Gs 00088 0.075%57 Gs 00033
Os o.05g83 11!3!51 c.16158 o0.00348 Ce3gI9s Os00I46
1.6 O« T4191 g.20148 o. 46407 - R T I-0518¢ 0= 00537
033655 34485236 1434353 0e049II  3e37605 o.o01588




Solution:

At bottom of layer 1:

To calculate the strains at the bottom of layer 1 use Equations 2.4 and 2.5.

&, = (0, -o0,)/E; =236.91 /400000 =5 .92 x 104

g1 = (04 -0,)/2E;=-236.91 / 2 x 400000 = -2 .96 x 10 (or diractlly, using equation
2.6 for find ¢)

At top of layer 2:

To calculate the strains at the top of layer 2 use Equations 2.4 and 2.5

g,1= (0, -0 )/ E,=(14.61-2.76)/ 20000 = 5 .92 x 10** = ¢, at bottom of layer 1
en=(0, -0,)/2E,=(2.76-14.61)/ 2 x 20000 = -2 .96 x 10 = ¢, at bottom of layer 1

At bottom of layer 2 :

To calculate the strains at the bottom of layer 2 use Equations 2.4 and 2.5.
g,,= (0, -0,)/E,=11.12 / 20000 = 5.56x 104

&, = (0, -0,,)/2E,=-11.12 / 2 x 20000 = -2 .78 x 104

At top of layer 3:

To calculate the strains at the top of layer 3 use Equations 2.4 and 2.5

g,3= (0, -0 ,)/E;=556 /10000 = 5.56x 104 =¢,, At bottom of layer 2
g3=(0,, -0, )[2E;=-556 /2 x 10000 = -2 .78 x 10-* At bottom of layer 2




2.2. Equivalent Thickness Method (OdeMark’s Concept)

Odemark's equivalent-layer-thickness (ELT) concept is often used as a simple method of
approximation in pavement structural analysis, since it permits the conversion of a multilayered
system into a single layer with equivalent thickness. It is based on the principle that the equivalent
layer has the same stiffness as the original layer, so as to give the same pressure distribution

beneath the layer as shown in Figures 2.29 and 2.30.

. _ E L /
Stiffness of layer 1 = > i

1—#1 B
- EZ 12 h I .: ................................................................................................................
Stiffness of layer 2 = 5 R
. 1 B ‘u'z = Lane width -,-I
bh
lyoom = ”r Figure 2 .28. Moment of inertia of
simply supported beam.
byh3 b, h3
I =— .1, =22 for by=h=1
1 D= or by=b,=1Tm
12 12

According to Odemark's theory:

E 1 E,I
Stiffness of layer 1 = Stiffness of layer2 =~ —1 1 _— ~2°2
Iy = 1, = 0.5 1—-u? 1-us



forlayer1 h, = i/i:: hy  forlayer2 h,= i/i:i h, .~ 23

917171711
. 3 |E; |
forlayeri h,= |— h; Ey My h,
EE‘ 3
Equivelent thickness (h,) of multy layers Ey M, h,
3 |Ey 3 |E, 3 |E; [
hez E_E h1+ E_E h2+“'+ E_E hi E3, }-13 ‘h3
n—1 s E Ell. I"l'll
The general formula: h, = fz — h; _ _  ©°
& || E. Figure 2 .29. Multilayer system.
For f value: For E1 > Ex
» In a 2-layer pavement system, use f = 0.9 to
convert the upper layer. x 1 . heE,
» In a multi-layer pavement system, use f = 0.8 to Stiffnelssx?ff‘z Yy 1 Sfivesse,
convert the rest of the layers. - . m S
¢ By ¢ Exmp

Note: only valid at or below the layer interface

Figure 2 .30. Odemark’s concept.



P N

9000-Ib dual wheel
Example 9: vith 90-psi tires

The structure as shown in Figure 2.31 represents a
multilayer pavement system?. By using Odemark's
concept, find the equivalent thickness of the structure?.

Figur
Solution: Exam |
As detailed in the Figures - o

}ﬁ 1.3 ﬂ 6,= 90 psi




