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Bernoulli distribution

Suppose you perform an experiment with two
possible outcomes: either success or failure.
Success happens with probability p, while failure
happens with probability 1-p. A random variable
that takes value 1 in case of success and O in case
of failure iIs called a Bernoulli random variable
(alternatively, 1t 1s saild to have a Bernoulli
distribution).



Bernoulli distribution

Definition:

The random variable X is called the Bernoulli random
variable if its probability mass function is of the form

fl@)=p"(1-p)'~*, z=0,1

Sample Space

where p is the probability
of success. X

X(F)=0 1= X(S)

We denote the Bernoulli random variable by writing X ~ BER(p).




Bernoulli distribution

Proof :

Non-negativity is obvious. We need to prove that
the sum of f(x) over its support equals 1. This is
proved as follows:

D FO0 = F(O)+f(D
= =1l—-p+p=1



Bernoulli distribution

Example :

What is the probability of getting a score of not less than 5 in a
throw of a six-sided die?

Answer: Although there are six possible scores {1, 2, 3, 4, 5, 6}, we are
grouping them into two sets, namely {1, 2, 3, 4} and {5, 6}. Any score in
{1, 2, 3, 4} is a failure and any score in {5, 6} is a success. Thus, this is a
Bernoulli trial with

4 2

P(X = 0) = P(failure) = 6 and  P{X =1) = P(success) = G

Hence, the probability of getting a score of not less than 5 in a throw of a

six-sided die is %.



Bernoulli distribution

Theorem :

If X 1s a Bernoulli random variable with parameter p,
then the mean, variance and moment generating
functions are respectively given by:

HX =P
ox =p(1-p)
Mx(t) = (1 —p)+pe’.



Bernoulli distribution

Proof:

Next, we find the moment generating
function of the Bernoulli random variable

The mean of the Bernoulli random variable is

1

#X=Z$f($) M(t) = (t".}

o=l

1
LY e - S a-pt

=l

=(1—p)+ep.

o=l
= p.

Similarly, the variance of X is given by

0% =) (¢ —px)? f(z)

=

=> (@-p’p"(1-p)~®

x=()
=p’(1-p)+p(1-p)°
=p(l-p)[p+(1—-p)]
=p(1-p).



Bernoulli distribution

Characteristic function

Definition Let X be a random variable. The characteristic function
&(t) of X is defined as

fﬁ(ﬂ — E(EHX)
= F (cos(tX) +isin(tX))
=F(cos(tX))+iE(sin(tX)).

The probability density function can be recovered from the characteristic

function by using the following formula

f@ =5 [ ot

— 0



Bernoulli distribution

Characteristic function

The characteristic function of a Bernoulli random variable X is

gy (t) =1—p+ pexp(it)

Proof. Using the definition of characteristic function:

ex () = Elexp(itx)]
S explitz) px ()

TERX
= exp(it-1}-px (1) +exp(it-0)-px (0}
exp(it) -p+1-(1—p)

1 — p+ pexp (it)



Bernoulli distribution

Distribution function

The distribution function of a Bernoulli random variable X is

0 if =< (0
Fy(r)=+4 1—p if0<Lzx<1
1 fr>1

Proof. Remember the definition of distribution function:
Fy(r)=P(X < 1)

and the fact that X can take either value 0 or value 1. If =z < (0, then P (X < z) =
(0, becanse X can not take values strictly smaller than 0. If 0 < = < 1, then
P{X < z) =1 — p, because 0 is the only value strictly smaller than 1 that X can
take. Finally, if x > 1, then P{X < x) = 1, because all values X can take are
smaller than or equal to 1. =



Solved exercises

Let X be a Bernoulli random variable with parameter p = 1/2. Find its tenth
morent.

Solution

The moment generating function of X is
1 1

The tcnil moment of X is equal to the tenth derivative of its moment generating
1

functior cvaluated at £ = 0:
AP NS+ (¢
px (10) = BE [X7°] = T(]
=0
But
AT = (¢ 1
BB Zexp(t)
dZ M+ (E) 1
gz — zep)
AN~ (2 -1
—[ﬂlﬂ;{ ] = EEKIJ [t}
so that:
A0 AL+ ()
i (10) = @ ——s———
dt10 =0
1 1
= 3 CxXp ['D] Y
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7/2\( Solved exercises

Let X and Y be two independent Bernoulli random variables with parameter p.
Derive the probability mass function of their sum: Z=X+Y?

Solution

The probability mass function of X is

i fex=1
px(z)=4 1—p HHx=0
0 otherwise
The probability mass function of ¥ is
P ify=1
py(y)=4 1—-p ify=0
0 otherwise

The support of Z (the set of values 2 can take) is

Ry = {{]:- 1. E}



A

Nﬂm formula for the probability mass function of a sum of two independent variables

pz(z)= Y px(z=y) py ()
yEfy
where Ry is the support of Y. When z =0, the formula gives:

pz(0) = > px(-v)py (¥

yEfy
= px (—=0)py (0) + px (1) py (1)
= (1-p)1-p)+0-p=(1-p)’
When z = 1, the formula gives:

pz(1) = > px(1-9)pr(®)

yENy
= px (1=0)py (0) +px (1 - 1)py (1)
= p-(1-p+{1-p)-p=2p(1-p)
When z = 2, the formula gives:

pz(2) = Y px(2-y)py ()

yEMRy
= px(2=0)py () +px(2—=1)py (1)
= 0-(1-p)+p-p=p



N
Therefore, the probability mass function of 2 is

(((1—-p)° ifz=0

) 2p(1—p) ifz=1
Pz (2) = P’ ifz=2

WL otherwise




