LECTURE NOTE

ON

PROBABILITY AND SATISTICS 2

BY

ASSIST. PRF. DR. MUSTAFA I. NAIF

DEPARTMENT OF MATHEMATICS
 COLLEGE OF EDUCATION FOR PURE SCIENCE UNIVERISTY OF ANBAR

> Outline :-

LECTURE 3\#

\checkmark Discrete distributions3- Poisson distribution
Definition
Expected value and Variance
Moment generating function
Characteristic function
Distribution function
Relation to the binomial distribution
Solved exercises
Exercises

Poisson distribution

Definition : A random variable X is said to have a Poisson distribution if its probability mass function is given by

$$
f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2, \cdots, \infty
$$

where $0<\lambda<\infty$ is a parameter. We denote such a random variable by $X \sim \operatorname{POI}(\lambda)$.

The probability density function f is called the Poisson distribution after Simeon D. Poisson (1781-1840).

Poisson distribution

Proof :

It is easy to check $f(x) \geq 0$. We show that $\sum_{x=0}^{\infty} f(x)$ is equal to one

$$
\begin{aligned}
\sum_{x=0}^{\infty} f(x) & =\sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!} \\
& =e^{-\lambda} e^{\lambda}=1
\end{aligned}
$$

Poisson distribution

Theorem: The mean , the variance the m.g.f. of Poisson distribution are:

Proof: First, we find the moment generating function of X.

$$
\begin{aligned}
M(t) & =\sum_{x=0}^{\infty} e^{t x} f(x) \\
& =\sum_{x=0}^{\infty} e^{t x} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} e^{t x} \frac{\lambda^{x}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(e^{t} \lambda\right)^{x}}{x!} \\
& =e^{-\lambda} e^{\lambda e^{t}} \\
& =e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

Poisson distribution

Thus,

$$
M^{\prime}(t)=\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}
$$

and

$$
E(X)=M^{\prime}(0)=\lambda
$$

Similarly,

$$
M^{\prime \prime}(t)=\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}+\left(\lambda e^{t}\right)^{2} e^{\lambda\left(e^{t}-1\right)}
$$

Hence

$$
M^{\prime \prime}(0)=E\left(X^{2}\right)=\lambda^{2}+\lambda
$$

Therefore

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
$$

Poisson distribution

Example : A random variable X has Poisson distribution with a mean of 3 . What is the probability that X is bounded by 1 and 3 , that is,

$$
P(1 \leq X \leq 3) ?
$$

Answer:

$$
\begin{gathered}
\mu_{X}=3=\lambda \\
f(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
\end{gathered}
$$

Hence

$$
f(x)=\frac{3^{x} e^{-3}}{x!}, \quad x=0,1,2, \ldots
$$

Therefore

$$
\begin{aligned}
P(1 \leq X \leq 3) & =f(1)+f(2)+f(3) \\
& =3 e^{-3}+\frac{9}{2} e^{-3}+\frac{27}{6} e^{-3} \\
& =12 e^{-3} .
\end{aligned}
$$

Poisson distribution

Example : The number of tra!c accidents per week in a small city has a Poisson distribution with mean equal to 3 . What is the probability of exactly 2 accidents occur in 2 weeks?

Answer: The mean tra!c accident is 3 . Thus, the mean accidents in two weeks are

$$
\lambda=(3)(2)=6 \text {. }
$$

Since

$$
f(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

we get

$$
f(2)=\frac{6^{2} e^{-6}}{2!}=18 e^{-6}
$$

Poisson distribution

Characteristic function:

The characteristic function of Poisson random variable X is

$$
\varphi_{X}(t)=\exp (\lambda[\exp (i t)-1])
$$

Proof:

$$
\begin{aligned}
\varphi_{X}(t) & =\mathrm{E}[\exp (i t X)] \\
& =\sum_{x \in R_{X}} \exp (i t x) p_{X}(x) \\
& =\sum_{x \in R_{X}}[\exp (i t)]^{x} \exp (-\lambda) \frac{1}{x!} \lambda^{x} \\
& =\exp (-\lambda) \sum_{x=0}^{\infty} \frac{(\lambda \exp (i t))^{x}}{x!} \\
& =\exp (-\lambda) \exp (\lambda \exp (i t)) \\
& =\exp (\lambda[\exp (i t)-1])
\end{aligned}
$$

where:

$$
\exp (\lambda \exp (i t))=\sum_{x=0}^{\infty} \frac{(\lambda \exp (i t))^{x}}{x!} \text { is the usual Taylor series expansion of }
$$

Poisson distribution

Distribution function: The distribution function of a Poisson random variable X is

$$
F_{X}(x)= \begin{cases}\left.\exp (-\lambda) \sum_{s=0}^{\lfloor x\rfloor} \frac{1}{s!}\right]^{s} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Where $\lfloor x\rfloor$ is the largest integer not greater than x .
Proof: $\quad \begin{aligned} F_{X}(x) & =\mathrm{P}(X \leq x) \\ & =\sum_{s=0}^{\lfloor x\rfloor} \mathrm{P}(X=s)\end{aligned}$
$=\sum_{s=0}^{\lfloor x\rfloor} p_{X}(s)$
$=\sum_{s=0}^{\lfloor x\rfloor} \exp (-\lambda) \frac{1}{s!} \lambda^{s}$
$=\exp (-\lambda) \sum_{s=0}^{\lfloor x\rfloor} \frac{1}{s!^{s}} \lambda^{s}$

Solved exercises

Let X have a Poisson distribution with parameter $\lambda=1$. What is the probability that $X \geq 2$ given that $X \leq 4$?
Solution

$$
\begin{aligned}
P(X \geq 2 / X \leq 4) & =\frac{P(2 \leq X \leq 4)}{P(X \leq 4)} . \\
P(2 \leq X \leq 4) & =\sum_{x=2}^{4} \frac{\lambda^{x} e^{-\lambda}}{x!} \\
& =\frac{1}{e} \sum_{x=2}^{4} \frac{1}{x!} \\
& =\frac{17}{24 e} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
P(X \leq 4) & =\frac{1}{e} \sum_{x=0}^{4} \frac{1}{x!} \\
& =\frac{65}{24 e} .
\end{aligned}
$$

Therefore, we have

$$
P(X \geq 2 / X \leq 4)=\frac{17}{65}
$$

Solved exercises

If the moment generating function of a random variable X is $M(t)=e^{4.6\left(e^{t}-1\right)}$, then what are the mean and variance of X ? What is the probability that X is between 3 and 6 , that is $P(3<X<6)$?

Solution: Since the moment generating function of X is given by

$$
M(t)=e^{4.6\left(e^{t}-1\right)}
$$

we conclude that $X \sim \operatorname{POI}(\lambda)$ with $\lambda=4.6$. Thus, by

$$
\begin{aligned}
E(X)=4.6 & =\operatorname{Var}(X) . \\
P(3<X<6) & =f(4)+f(5) \\
& =F(5)-F(3) \\
& =0.686-0.326 \\
& =0.36 .
\end{aligned}
$$

