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Poisson distribution

Definition : A random variable X is said to have a Poisson
distribution if its probability mass function is given by

P
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flz) =

where 0 < A < oo is a parameter. We denote such a random variable by

X ~ POI()).
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The probability density function f is called the Poisson distribution
after Simeon D. Poisson (1781-1840).



Poisson distribution

Proof : -
It is easy to check f(z) > 0.\We show that » _f(z)
is equal to one =0
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Poisson distribution

Theorem: The mean , the variance the m.qg.f. of Poisson

distribution are: E(X) =)
Proof: First, we find the moment generating function of X. Var(X) = A
= M(t) = D),




Thus,

and

Similarly,

Hence

Therefore

Poisson distribution

M'(¢) = Aet e e —1),
E(X)=M'(0) =
M"(t) = Aet D 4 (Aet)? D),

M"(0) = E(X?) = A2 + A

Var(X)=E(X) = (E(X))? =X +A=-2= A



Poisson distribution

Example : A random variable X has Poisson distribution with a mean of 3.
What is the probability that X is bounded by 1 and 3, that is,

P(1< X <3)?

Answer:
}LIE—A
fla)="7
Hence ,
3T e
flz) = o z=0,1,2, ..
Therefore
P1<X <3)=f(1)+ f(2)+ F(3)
9 27
a3 ,9Y 3 = _3
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Poisson distribution

Example : The number of tralc accidents per week in a small city
has a Poisson distribution with mean equal to 3. What is the
probability of exactly 2 accidents occur in 2 weeks?

Answer: The mean tralc accident is 3. Thus, the mean accidents in
two weeks are A=(3)(2) =6.
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Poisson distribution

Characteristic function:
The characteristic function of Poisson random variable X is

px (t) = exp (A [exp (it) — 1])
px (t) = Elexp (itX)]
= ) exp(itz) px (z)

reERx

Proof:

= Y lexp (i) exp(=2) 1 X°
TERx

oxp ()3 e @)

o=
exp (—A) exp (X exp (it))
exp (A [exp (it) — 1])

where:

exp (A exp (it)) = i (Aexp (it))" s the usual Taylor series expansion of
z! the exponential function

=l



Poisson distribution

Distribution function: The distribution function of a Poisson
random variable X is
Fy (2) = { exp (=) LiZy X if 2> 0

0 otherwise

Where |z| is the largest integer not greater than x.

Fy(z) = P(X <2x)
Proof: x () =)

= ZP(X=S)
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7/1\( Solved exercises

Let X have a Poisson distribution with parameter A =1. What is
the probability that X >2 given that x <47

Solution P(ng/xg4)=Pgéi§f)-

4
P{25X54)=Z
=2
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Similarly

1 1
e — x!
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Therefore, we have

17
P(X>2/X <4)= .
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)2\( Solved exercises

If the moment generating function of a random variable X is
M(t) = e+6('=1)  then what are the mean and variance of X? What
is the probability that X is between 3 and 6, thatis P(3 < X <6)?

Solution: Since the moment generating function of X is given by

fla'{(t) — E4.ﬁ|:e‘—1}
we conclude that X ~ POI(A) with A = 4.6. Thus, by
E(X) =46 =Var(X).

P(3 < X <6)=f(4) + £(5)
= F(5) — F(3)
= 0.686 — 0.326
= 0.36.



