

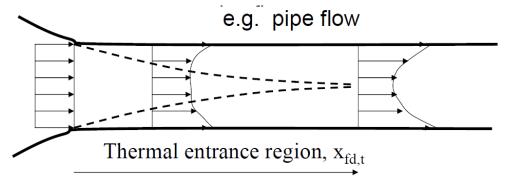
Lecture Thirteen

Forced Convection (Internal Flow)

1- Thermal Conditions.

Laminar or turbulent

entrance flow and fully developed thermal condition

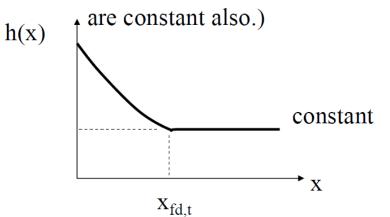


For laminar flows the thermal entrance length is a function of the Reynolds number and the Prandtl number: $x_{fd,t}/D \approx 0.05 Re_D Pr$, where the Prandtl number is defined as $Pr = v/\alpha$ and α is the thermal diffusitivity.

For turbulent flow, $x_{fd,t} \approx 10D$.

2- <u>The convection coefficient.</u>

• For a fully developed pipe flow, the convection coefficient is a constant and is not varied along the pipe length. (as long as all thermal and flow properties



3- Energy Transfer.

• Newton's law of cooling: $q''_s = hA(T_s - T_m)$ Question: since the temperature inside a pipe flow is not constant, what temperature we should use. A mean temperature T_m is defined.

Consider the total thermal energy carried by the fluid as

$$\int_{A} \rho V C_{v} T dA = (\text{mass flux}) \text{ (internal energy)}$$

Now image this same amount of energy is carried by a body of fluid with the same mass flow rate but at a uniform mean temperature T_m . Therefore T_m can be defined as

$$T_m = \frac{\int \rho V C_v T dA}{\dot{m} C_v}$$

Consider T_m as the reference temperature of the fluid so that the total heat transfer between the pipe and the fluid is governed by the Newton's cooling law as: q_s "= $h(T_s-T_m)$, where h is the local convection coefficient, and T_s is the local surface temperature. Note: usually T_m is not a constant and it varies along the pipe depending on the condition of the heat transfer.

4- Energy Balance Equation.

Example: We would like to design a solar water heater that can heat up the water temperature from 20° C to 50° C at a water flow rate of 0.15 kg/s. The water is flowing through a 5 cm diameter pipe and is receiving a net solar radiation flux of 200 W per unit length (meter). Determine the total pipe length required to achieve the goal.

a- How do we determine the heat transfer coefficient, h?

b- How can we determine the required pipe length?

There are a total of six parameters involving in this problem: h, V, D, v, k_f , c_p . The last two variables are thermal conductivity and the specific heat of the water. The temperature dependence is implicit and is only through the variation of thermal properties. Density ρ is included in the kinematic viscosity, $v=\mu/\rho$. According to the Buckingham theorem, it is possible for us to reduce the number of parameters by three. Therefore, the convection coefficient relationship can be reduced to a function of only three variables:

Nu=hD/k_f, Nusselt number, Re=VD/v, Reynolds number, and $Pr=v/\alpha$, Prandtl number.

This conclusion is consistent with empirical observation, that is Nu=f(Re, Pr). If we can determine the Reynolds and the Prandtl numbers, we can find the Nusselt number, hence, the heat transfer coefficient, h.

Nu=hD/k_f, Nusselt number, Re=VD/ ν , Reynolds number, and Pr= ν/α , Prandtl number.

This conclusion is consistent with empirical observation, that is Nu=f(Re, Pr). If we can determine the Reynolds and the Prandtl numbers, we can find the Nusselt number, hence, the heat transfer coefficient, h.

5- <u>Convection Correlations.</u>

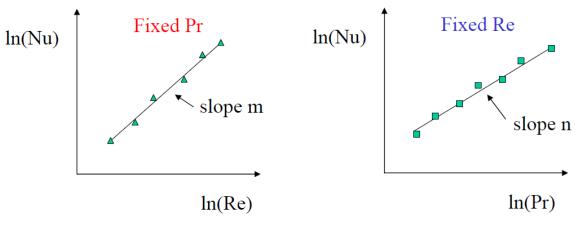
<u>a-</u> Laminar, fully developed circular pipe flow:

$$Nu_D = \frac{hD}{k_f} = 4.36$$
, when q_s " = constant,
 $Nu_D = 3.66$, when $T_s = constant$

Note: the therma conductivity should be calculated at T_m .

<u>b-</u>

 \Rightarrow Fully developed, turbulent pipe flow: Nu = f(Re, Pr), Nu can be related to Re & Pr experimentally, as shown.



6- Empirical Correlations.

Dittus-Boelter equation: $Nu_D = 0.023 \text{ Re}^{4/5} \text{ Pr}^n$, where n = 0.4 for heating (T_s > T_m), n = 0.3 for cooling (T_s < T_m). The range of validity: $0.7 \le \text{Pr} \le 160$, $\text{Re}_D \ge 10,000$, $L/D \ge 10$. Note: This equation can be used only for moderate temperature difference with all the properties evaluated at T_m.

Other more accurate correlation equations can be found in other references. Caution: The ranges of application for these correlations can be quite different. For example, the Gnielinski correlation is the most accurate

among all these equations:

Nu_D =
$$\frac{(f/8)(\text{Re}_D - 1000) \text{Pr}}{1 + 12.7(f/8)^{1/2}(\text{Pr}^{2/3} - 1)}$$

It is valid for 0.5 < Pr < 2000 and $3000 < Re_D < 5 \times 10^6$. All properties are calculated at T_m .