University of Anbar College of Engineering Dept. of Electrical Engineering

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

Experiment No.5

SERIES-PARALLEL NETWORKS

Object

Become familiar with connect the series-parallel circuits and examine the seriesparallel combination

Theory

A series-parallel configuration is one that is formed by a combination of series and parallel elements Fig.1

The network in Fig. .1 is a series-parallel network. At first, you must be very careful to determine which elements are in series and which are in parallel. For instance, resistors R1 and R2 are *not* in series due to resistor R3 connected to the common point *b* between R1 and R2. Resistors R2 and R4 are *not* in parallel because they are not connected at both ends. They are separated at one end by resistor R3. The need to be absolutely sure of your definitions from the last two chapters now becomes obvious. In fact, it may be a good idea to refer to those rules as we progress through this chapter. If we look carefully enough at Fig. 7.1, we do find that the two resistors R3 and R4 are in series because they share only point *c*, and no other element is connected to that point

University of Anbar College of Engineering Dept. of Electrical Engineering

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

University of Anbar
College of Engineering
Dept. of Electrical Engineering

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

2. Increase the applied voltage from the D.C power supply from $(0 - 10)$ V, in								
step of (2)V, measure the current and voltage through the (1K Ω) resistor in								
each step 1 and record the measured result of table.1.								
supply	(mA)	measured	(mA)	calculated	%			
(volt)								
2								
4								
6								
<u> </u>								
10		Table	1 = 1					
		TUCK		≥ 1				
States in the suite								
	\sim	al an						
3. Increase the Value of R1. let R2 100 Ω and record the measured result								
Table 2.								
potentiometer	I measured	V	I calculated		Error			
(Ohm)	(mA)	measured	(mA)	calculated	%			
200								
					3			

University of Anbar College of Engineering Dept. of Electrical Engineering

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

400								
800								
1000								
1500								
2000								
Table 2								
<u>Discussion</u>	J.OF	ELEC بة الأنبار	IRICA 2015	-				
1 Increase 1	the Value of R?	in same val	ue of R1as in t	he table 2 and	d record the			
neasured	result let R1 ar	ad 1000	de of Kras in t	ne table 2 and				
2 What ha	ppened for the	voltage at	d current in	anch branch	when we			
2. What ha	the applied volte	voltage al	iu current in	each branch	i when we			
2 What ha	ine applied volta	age	d aumont in	and bronch	when we			
5 What ha	ppened for the	voltage al	la current in	each branch	i when we			
	ne value of RT	A Star		Silver	1			
4 what ha	ppened for the	voltage af	nd current in	each branch	i when we			
Increase	the value of R2		1.		1 1			
5 Can you	tell me, what 1	s the difference	ence between	number (3) a	and number			
(4)?	$\langle \rangle$	سة ال≥∽~~	-pug-					
					•			