

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

Experiment No.7

Maximum Power Transfer Theorem

<u>Object</u>

To prove Maximum Power Transfer theorem practically.

Theory

the process of finding the load that will receive maximum power from a particular system is quite straightforward due to the **maximum power transfer theorem**, which states the following:

A load will receive maximum power from a network when its

resistance is exactly equal to the Thévenin resistance of the network

applied to the load. That is

$$R_L = R_{th}$$

In other words, for the Thévenin equivalent circuit in Fig. 1, when the load is set equal to the Thévenin resistance, the load will receive maximum power from the network. Using Fig. 1 with RL = RTh, the maximum power delivered to the load can be determined by first finding the current

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

If we tabulate the three quantities versus a range of values for RL from

0.1 Ω to 30 Ω we obtain the results appearing in Table 1. Note in particular that when *RL* is equal to the Thévenin resistance of 9 Ω the

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

power has a maximum value of 100 W, the current is 3.33 A or one-half its max-

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

Procedure

- 1. Connect the circuit shown. let Value of R1 and R2 1k Ω in Fig.3
- 2. Measure the value Rth and Vth

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

Table 2	2
---------	---

	R _L (Ohm)	P _L (watt)	I _L (A)	V _L (V)
	50			
	100			
	150			
	200			
	250			
	300			
	350			
	400			
-	450			
	500			
	550			
	600			
-	650			
	700			
	750			
	800			
	850			
	900			
	950			
	1000			

Table 1

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

Discussion

- 1 .Plot the curve of the power against the load resistance and determine the maximum power
- 2. Compare between the theoretical and practical results

3. Compare between power when the load applied is less than the Thévenin resistance and the applied load is greater than the Thévenin resistance,

4.a Determine i_0 and V_0 in the circuit shown, using Thévenin theorem when R_0 is (0,2,4,10,15,20,30,50,60,70)

b calculate the power delivered for each value of R_o

c. plot the power delivered for each value of R_o versus the resistance R_o

d At what value of R_0 is the power delivered to R_0 a maximum

Lab. Name: :fundamental of Electric circuit Experiment no.: Lab. Supervisor:

