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CHAPTER 6 BENDING 

5. UNSYMMETRIC BENDING 

The derivation of the flexure formula considered the case in which the cross–section area was 

symmetric about an axis perpendicular to the neutral axis; i.e. Ixy = 0, furthermore, the 

resultant internal moment M acts perpendicular to the axis of symmetry. 

 

As it will be shown next, the relation σ = –M y / I can be applied to any cross section with a 

bending moment as long as the moment is around a principal axis and I is a principal moment 

of inertia, i.e. Ixy = 0. 

These conditions are actually unnecessary. The flexure formula can also be applied to a beam 

in the following two cases: 

Case (I) The cross section is symmetric, so it is known where the principal axes are, but the 

moment vector M is not acting perpendicular to the axis of symmetry. 

Case (II) The cross section area does not have an axis of symmetry with a moment applied. 

• Case (I) Moment Arbitrarily Applied 

Consider a rectangular cross section with a 

moment vector at an angle θ from the z axis in the 

plane of the cross section. 

By expressing the moment vector in terms of its 

components about the y and z axes, the flexure 

equation can be applied to each moment and use 

superposition to add the stresses together. 

Notice that in the equation σ = M y / I the moment 

must be about an axis of symmetry, the moment 

of inertia must be with respect to the same axis as 
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the moment, and y represents a distance measured perpendicular to the axis the moment is 

around. 

 

Consider the stress due to Mz. The equation used will be σ = Mz y / Iz  

There must be a sign placed on the stress based on whether the stress is tensile or 

compressive. 

A general equation can be written by allowing y to be positive or 

negative based on the coordinate of the point where the stress 

needs to be calculated. At a point where y is positive, Mz causes 

compression based on the direction of the moment. At a point 

where z is negative, My causes compression, thus the resultant 

normal stress at any point on the cross section is: 

 

This equation is good for any point in the cross section. The normal stress can be determined 

by substituting the appropriate coordinate values of the point of interest. 

Since the stress at the neutral axis is zero, then this equation allows the determination of the 

neutral axis. By setting the general stress equation equal to zero: 

 

Given that Mz = Mcosθ and My = Msinθ: 

 

This equation defines the neutral axis for the cross section. The slope of this line is tan α = 

y/z: 

 

Through the general stress equation it is possible to determine where the 

maximum stress occurs by finding the point farthest away from the 

neutral axis. 

Thus, σmax occurs at points A and B where the stress at A is tensile and 

the stress at B is compressive. 
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• Case (II) Beam’s Cross Section Area without Axis of Symmetry 

Consider the beam’s cross section area without 

symmetry axis shown. The beam is subjected to a 

moment M as shown. 

The objective is to determine the stress at an 

arbitrary point P(y, z) of the cross–section area. 

As it will be seen, the stress at P can be found 

through the use of the stress equation derived in the 

previous section. It only needs to be adapted to the 

unsymmetric area. 

 

Consider, a cross section area as shown with a moment acting 

around the y axis. 

The first step is to determine the centroid of the area and fix the 

origin of the coordinate system y–z to it.  

Then calculate the moments of inertia Ix, Iy, Ixy. In this case, 

since the area is not symmetric the product of inertia, Ixy, is not zero. 

 

The principal axes and principal moments of inertia can 

be determined as 

 

The stress at an arbitrary point can be found since the principal axes are now located in terms 

of the angle θP and Iy’ and Iz’ (Imax, Imin) are known, the moment M can be written in terms of 

its y’ and z’ components. 

 

Where:  

The point where the maximum stress occurs may not be obvious. 

The easiest way to find the maximum stress for a general cross section is to locate the neutral 

axis as before, then determine which point in the cross section is furthest away from that axis. 
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Example 19: The rectangular cross section shown in Figure is subjected to a bending 

moment of M = 12 kN . m. Determine the normal stress developed at each corner of the 

section, and specify the orientation of the neutral axis.  

 

 

 

Example 20: The Z-section shown in Figure is subjected to the bending moment of M = 20 

kN . m. The principal axes y and z are oriented as shown, such that they represent the 

minimum and maximum principal moments of inertia, Iy = 0.960(10
-3

) m
4
 and Iz = 7.54(10

-3
) 

m
4
, respectively. Determine the normal stress at point P and the orientation of the neutral 

axis.  
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Sheet No. 3 

 

 Q 1: If the wood used for the T-beam has an allowable tensile 

and compressive stress of (σallow)t = 4 MPa and (σallow)c = 6 

MPa, respectively, determine the maximum allowable internal 

moment M that can be applied to the beam. 

 

 

 

 

Q 2: The member has a square cross section 

and is subjected to a resultant internal 

bending moment of M = 850 N.m as shown. 

Determine the stress at each corner and 

sketch the stress distribution produced by 

M. Set θ = 45°. 

 

 

Q 3: The beam is subjected to a bending moment of M = 

20 kip . ft directed as shown.  

(1) Determine the maximum bending stress in the beam 

and the orientation of the neutral axis. 

(2) Determine the maximum magnitude of the bending 

moment M that can be applied to the beam so that the 

bending stress in the member does not exceed 12 ksi. 

 

Q 4: The 30-mm-diameter shaft is subjected to the vertical 

and horizontal loadings of two pulleys as shown. It is 

supported on two journal bearings at A and B which offer 

no resistance to axial loading. Furthermore, the coupling 

to the motor at C can be assumed not to offer any support 

to the shaft. Determine the maximum bending stress 

developed in the shaft. 
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6. COMPOSITE BEAMS  

Beams constructed of two or more different materials are referred to as 

composite beams. An example is a beam made of wood with straps of 

steel at its top and bottom, Figure. 

 

Since the flexure formula was developed only for beams made of homogeneous material, this 

formula cannot be applied to directly determine the normal stress in a composite beam. In this 

section, however, we will develop a method for modifying or “transforming” a composite 

beam’s cross section into one made of a single material. Once this has been done, the flexure 

formula can then be used to determine the bending stress in the beam. 

To explain how to do this we will consider a composite beam made of two materials, 1 and 2, 

bonded together as shown in Fig. a. If a bending moment is applied to this beam, then, like 

one that is homogeneous, the total cross-sectional area will remain plane after bending, and 

hence the normal strains will vary linearly from zero at the neutral axis to a maximum 

farthest from this axis, Fig. b. Provided the material is linear elastic, then at any point the 

normal stress in material 1 is determined from σ = E1ε, and for material 2 the stress is found 

from σ = E2ε. Assuming material 1 is stiffer than material 2, then E1 > E2 and so the stress 

distribution will look like that shown in Fig. c or d. In particular, notice the jump in stress that 

occurs at the juncture of the two materials. Here the strain is the same, but since the modulus 

of elasticity for the materials suddenly changes, so does the stress. 

 

Rather than using this complicated stress distribution, it is simpler to transform the beam into 

one made of a single material. For example, if the beam is thought to consist entirely of the 

less stiff material 2, then the cross section will look like that shown in Fig. e. Here the height 

h of the beam remains the same, since the strain distribution in Fig. b must be the same. 

However, the upper portion of the beam must be widened in order to carry a load equivalent 

to that carried by the stiffer material 1 in Fig. d. This necessary width can be determined by 

considering the force dF acting on an area dA = dz dy of the beam in Fig. a. It is dF = σ dA = 

E1ε (dz dy). Assuming the width of a corresponding element of height dy in Fig. e is n dz, 

then dF’ = σ_dA’ = E2ε (n dz dy). Equating these forces, so that they produce the same 

moment about the z (neutral) axis, we have 

     Or      
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This dimensionless number n is called the transformation factor. It indicates that the cross 

section, having a width b on the original beam, Fig. a, must be increased in width to b2 = nb 

in the region where material 1 is being transformed into material 2, Fig. e. 

In a similar manner, if the less stiff material 2 is transformed into the stiffer material 1, the 

cross section will look like that shown in Fig. f. Here the width of material 2 has been 

changed to b1 = n’b, where n’ = E2 / E1. In this case the transformation factor n’ will be less 

than one since E1 > E2. In other words, we need less of the stiffer material to support the 

moment. 

Once the beam has been transformed into one having a single material, the normal-stress 

distribution over the transformed cross section will be linear as shown in Fig. g or Fig. h. 

Consequently, the flexure formula can now be applied in the usual manner to determine the 

stress at each point on the transformed beam. Of course, the stress in the transformed beam 

will be equivalent to the stress in the same material of the actual beam; however, the stress in 

the transformed material has to be multiplied by the transformation factor n (or n’) to obtain 

the stress in any other actual material that was transformed. This is because the area of the 

transformed material, dA’ = n dz dy, is n times the area of actual material dA = dz dy. That is, 
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Example 21: The composite beam in Figure is made of wood and reinforced with a steel 

strap located on its bottom side. If the beam is subjected to a bending moment of M = 2 

kN.m, determine the normal stress at points B and C. Take Ew = 12 GPa and Est = 200 GPa. 

 

 

7. REINFORCED CONCRETE BEAMS 

All beams subjected to pure bending must resist both tensile and 

compressive stresses. Concrete, however, is very susceptible to 

cracking when it is in tension, and therefore by itself it will not be 

suitable for resisting a bending moment. In order to circumvent 

this shortcoming, engineers place steel reinforcing rods within a 

concrete beam at a location where the concrete is in tension, Fig. 

a. To be most effective, these rods are located farthest from the 

beam’s neutral axis, so that the moment created by the forces 

developed in them is greatest about the neutral axis. Furthermore, 

the rods are required to have some concrete coverage to protect 

them from corrosion or loss of strength in the event of a fire. 

Codes used for actual reinforced concrete design assume the 

concrete will not be able to support any tensile loading, since the 

possible cracking of concrete is unpredictable. As a result, the 

normal‑stress distribution acting on the cross-sectional area of a 

reinforced concrete beam is assumed to look like that shown in Fig. b. 

The stress analysis requires locating the neutral axis and determining the maximum stress in 

the steel and concrete. To do this, the area of steel Ast is first transformed into an equivalent 

area of concrete using the transformation factor n = Est / Econc. This ratio, which gives n > 1, 

requires a “greater” amount of concrete to replace the steel. The transformed area is nAst and  
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the transformed section looks like that shown in Fig. c. Here d represents the distance from 

the top of the beam to the thin strip of (transformed) steel, b is the beam’s width, and h’ is the 

yet unknown distance from the top of the beam to the neutral axis. To obtain h’, we require 

the neutral axis to pass through the centroid C of the cross-sectional area of the transformed 

section, Fig. c. With reference to the neutral axis, therefore, the moment of the two areas 

together,  

 

Once h’ is obtained from this quadratic equation, the solution proceeds in the usual manner 

for obtaining the stress in the beam. 

 

 

Example 22: The reinforced concrete beam has the cross-sectional area shown in Figure. If it 

is subjected to a bending moment of M = 60 kip . ft, determine the normal stress in each of 

the steel reinforcing rods and the maximum normal stress in the concrete. Take Est = 29(10
3
) 

ksi and Econc = 3.6(10
3
) ksi. 
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 Q 1: The composite beam is made of 6061-T6 aluminum (A) and C83400 red brass (B). 

Determine the dimension h of the brass strip so that the 

neutral axis of the beam is located at the seam of the 

two metals. What maximum moment will this beam 

support if the allowable bending stress for the 

aluminum is (σallow)al = 128 MPa and for the brass 

(σallow)br = 35 MPa? 

 

Q 2: The composite beam is made of steel (A) bonded to 

brass (B) and has the cross section shown. If it is subjected 

to a moment of M = 6.5 kN m, determine the maximum 

bending stress in the brass and steel. Also, what is the 

stress in each material at the seam where they are bonded 

together? Ebr = 100 GPa. Est = 200 GPa. 

 

Q 3: Segment A of the composite beam is made 

from 2014-T6 aluminum alloy and segment B is A-

36 steel. The allowable bending stress for the 

aluminum and steel are (σallow)al = 15 ksi and 

(σallow)st = 22 ksi. Determine the maximum 

allowable intensity w of the uniform distributed 

load. 

Q 4: The concrete beam is reinforced with three 20-mm diameter 

steel rods. Assume that the concrete cannot support tensile stress. If 

the allowable compressive stress for concrete is (σallow)con = 12.5 

MPa and the allowable tensile stress for steel is (σallow)st = 220 

MPa, determine the required dimension d so that both the concrete 

and steel achieve their allowable stress simultaneously. This 

condition is said to be ‘balanced’. Also, compute the corresponding 

maximum allowable internal moment M that can be applied to the beam. The moduli of 

elasticity for concrete and steel are Econ = 25 GPa and Est = 200 GPa, respectively. 


