

Chapter 1. Introduction

I. Basic Concepts

The finite element method (FEM), or finite element analysis (FEA), is based on the idea of building a complicated object with simple blocks, or, dividing a complicated object into small and manageable pieces. Application of this simple idea can be found everywhere in everyday life as well as in engineering.

Examples:

- Lego (kids' play)
- Buildings
- Approximation of the area of a circle:

Area of one triangle: $S_{i}=\frac{1}{2} R^{2} \sin \theta_{i}$
Area of the circle: $S_{N}=\sum_{i=1}^{N} S_{i}=\frac{1}{2} R^{2} N \sin \left(\frac{2 \pi}{N}\right) \rightarrow \pi R^{2}$ as $N \rightarrow \infty$ where $\mathrm{N}=$ total number of triangles (elements).

Why Finite Element Method?

- Design analysis: hand calculations, experiments, and computer simulations
- FEM/FEA is the most widely applied computer simulation method in engineering
- Closely integrated with CAD/CAM applications
- ...

Applications of FEM in Engineering

- Mechanical/Aerospace/Civil/Automobile Engineering
- Structure analysis (static/dynamic, linear/nonlinear)
- Thermal/fluid flows
- Electromagnetics
- Geomechanics
- Biomechanics
- ...

Examples:

A Brief History of the FEM

- 1943 ----- Courant (Variational methods)
- 1956 ----- Turner, Clough, Martin and Topp (Stiffness)
- 1960 ----- Clough ("Finite Element", plane problems)
- 1970s ----- Applications on mainframe computers
- 1980s ----- Microcomputers, pre- and postprocessors
- 1990s ----- Analysis of large structural systems

FEM in Structural Analysis

Procedures:

- Divide structure into pieces (elements with nodes)
- Describe the behavior of the physical quantities on each element
- Connect (assemble) the elements at the nodes to form an approximate system of equations for the whole structure
- Solve the system of equations involving unknown quantities at the nodes (e.g., displacements)
- Calculate desired quantities (e.g., strains and stresses) at selected elements

Example:

Computer Implementations

- Preprocessing (build FE model, loads and constraints)
- FEA solver (assemble and solve the system of equations)
- Postprocessing (sort and display the results)

Available Commercial FEM Software Packages

- ANSYS (General purpose, PC and workstations)
- SDRC/I-DEAS (Complete CAD/CAM/CAE package)
- NASTRAN (General purpose FEA on mainframes)
- ABAQUS (Nonlinear and dynamic analyses)
- COSMOS (General purpose FEA)
- $A L G O R$ (PC and workstations)
- PATRAN (Pre/Post Processor)
- HyperMesh (Pre/Post Processor)
- Dyna-3D (Crash/impact analysis)
- ...

Objectives of This FEM Course

- Understand the fundamental ideas of the FEM
- Know the behavior and usage of each type of elements covered in this course
- Be able to prepare a suitable FE model for given problems
- Can interpret and evaluate the quality of the results (know the physics of the problems)
- Be aware of the limitations of the FEM (don't misuse the FEM - a numerical tool)

II. Review of Matrix Algebra

Linear System of Algebraic Equations

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \tag{1}\\
& \ldots \ldots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{align*}
$$

where $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ are the unknowns.

In matrix form:

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{A}=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \\
& \mathbf{x}=\left\{x_{i}\right\}=\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right\} \quad \begin{array}{l}
\mathbf{b}=\left\{b_{i}\right\}=\left\{\begin{array}{c}
b_{1} \\
b_{2} \\
: \\
b_{n}
\end{array}\right\}
\end{array} . \tag{3}
\end{align*}
$$

\mathbf{A} is called a $n \times n$ (square) matrix, and \mathbf{x} and \mathbf{b} are (column) vectors of dimension n.

Row and Column Vectors

$$
\mathbf{v}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right] \quad \mathbf{w}=\left\{\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right\}
$$

Matrix Addition and Subtraction

For two matrices \mathbf{A} and \mathbf{B}, both of the same size $(m \times n)$, the addition and subtraction are defined by
$\mathbf{C}=\mathbf{A}+\mathbf{B}$
with
$c_{i j}=a_{i j}+b_{i j}$
$\mathbf{D}=\mathbf{A}-\mathbf{B}$
with $\quad d_{i j}=a_{i j}-b_{i j}$

Scalar Multiplication

$$
\lambda \mathbf{A}=\left[\lambda a_{i j}\right]
$$

Matrix Multiplication

For two matrices \mathbf{A} (of size $l \times m$) and \mathbf{B} (of size $m \times n$), the product of $\mathbf{A B}$ is defined by

$$
\mathbf{C}=\mathbf{A B} \quad \text { with } c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}
$$

where $i=1,2, \ldots, l ; j=1,2, \ldots, n$.
Note that, in general, $\mathbf{A B} \neq \mathbf{B A}$, but $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$ (associative).

Transpose of a Matrix

If $\mathbf{A}=\left[a_{i j}\right]$, then the transpose of \mathbf{A} is

$$
\mathbf{A}^{T}=\left[a_{j i}\right]
$$

Notice that $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$.

Symmetric Matrix

A square $(n \times n)$ matrix \mathbf{A} is called symmetric, if

$$
\mathbf{A}=\mathbf{A}^{T} \quad \text { or } \quad a_{i j}=a_{j i}
$$

Unit (Identity) Matrix

$$
\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

Note that $\mathbf{A I}=\mathbf{A}, \mathbf{I}=\mathbf{x}$.

Determinant of a Matrix

The determinant of square matrix \mathbf{A} is a scalar number denoted by $\operatorname{det} \mathbf{A}$ or $|\mathbf{A}|$. For 2×2 and 3×3 matrices, their determinants are given by

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

and

$$
\begin{array}{r}
\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{21} a_{32} a_{13} \\
\\
-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{23} a_{32} a_{11}
\end{array}
$$

Singular Matrix

A square matrix \mathbf{A} is singular if $\operatorname{det} \mathbf{A}=0$, which indicates problems in the systems (nonunique solutions, degeneracy, etc.)

Matrix Inversion

For a square and nonsingular matrix $\mathbf{A}(\operatorname{det} \mathbf{A} \neq 0)$, its inverse \mathbf{A}^{-1} is constructed in such a way that

$$
\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

The cofactor matrix \mathbf{C} of matrix \mathbf{A} is defined by

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

where $M_{i j}$ is the determinant of the smaller matrix obtained by eliminating the i th row and j th column of \mathbf{A}.

Thus, the inverse of \mathbf{A} can be determined by

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}} \mathbf{C}^{T}
$$

We can show that $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.

Examples:

(1) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{(a d-b c)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Checking,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\frac{1}{(a d-b c)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(2) $\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]^{-1}=\frac{1}{(4-2-1)}\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]^{T}=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$

Checking,

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If det $\mathbf{A}=0$ (i.e., \mathbf{A} is singular), then \mathbf{A}^{-1} does not exist!
The solution of the linear system of equations (Eq.(1)) can be expressed as (assuming the coefficient matrix \mathbf{A} is nonsingular)

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

Thus, the main task in solving a linear system of equations is to found the inverse of the coefficient matrix.

Solution Techniques for Linear Systems of Equations

- Gauss elimination methods
- Iterative methods

Positive Definite Matrix

A square $(n \times n)$ matrix \mathbf{A} is said to be positive definite, if for any nonzero vector \mathbf{x} of dimension n,

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0
$$

Note that positive definite matrices are nonsingular.

Differentiation and Integration of a Matrix

Let

$$
\mathbf{A}(t)=\left[a_{i j}(t)\right]
$$

then the differentiation is defined by

$$
\frac{d}{d t} \mathbf{A}(t)=\left[\frac{d a_{i j}(t)}{d t}\right]
$$

and the integration by

$$
\int \mathbf{A}(t) d t=\left[\int a_{i j}(t) d t\right]
$$

