
II. Bar Element

Consider a uniform prismatic bar:

L length

A cross-sectional area

E elastic modulus

u u x ( ) displacement

 ( )x strain

 ( )x stress

Strain-displacement relation:
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Stiffness Matrix --- Direct Method

Assuming that the displacement u is varying linearly along
the axis of the bar, i.e.,
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We also have
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(F = force in bar) (6)

Thus, (5) and (6) lead to
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where k
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  is the stiffness of the bar.

The bar is acting like a spring in this case and we conclude
that element stiffness matrix is
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This can be verified by considering the equilibrium of the forces
at the two nodes.

Element equilibrium equation is
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Degree of Freedom (dof)

Number of components of the displacement vector at a
node.

For 1-D bar element:  one dof at each node.

Physical Meaning of the Coefficients in k

The jth column of k (here j = 1 or 2) represents the forces
applied to the bar to maintain a deformed shape with unit
displacement at node j and zero displacement at the other node.



Stiffness Matrix --- A Formal Approach

We derive the same stiffness matrix for the bar using a
formal approach which can be applied to many other more
complicated situations.

Define two linear shape functions as follows
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where
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From (3) we can write the displacement as
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Strain is given by (1) and (12) as
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where B is the element strain-displacement matrix, which is
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Stress can be written as

 E EBu (15)

Consider the strain energy stored in the bar
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where (13) and (15) have been used.

The work done by the two nodal forces is
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For conservative system, we state that

U W (18)

which gives

 1
2

1
2

u B B u u fT T TE dV
V
















We can conclude that

 B B u fTE dV
V
















or



Lecture Notes:  Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

ku f (19)

where
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(20)

is the element stiffness matrix.

Expression (20) is a general result which can be used for
the construction of other types of elements.  This expression can
also be derived using other more rigorous approaches, such as
the Principle of Minimum Potential Energy, or the Galerkin’s
Method.

Now, we evaluate (20) for the bar element by using (14)
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which is the same as we derived using the direct method.

Note that from (16) and (20), the strain energy in the
element can be written as

U 
1

2
u kuT (21)



Example 2.1

Problem: Find the stresses in the two bar assembly which is
loaded with force P, and constrained at the two ends,
as shown in the figure.

Solution: Use two 1-D bar elements.
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Imagine a frictionless pin at node 2, which connects the two
elements.  We can assemble the global FE equation as follows,
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Load and boundary conditions (BC) are,

u u F P1 3 20  ,

FE equation becomes,
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Deleting the 1st row and column, and the 3rd row and column,
we obtain,
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Stress in element 1 is
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Similarly, stress in element 2 is

 2 2 2 2

2

3

3 2

1 1

0
3 3

   











 



  

E E E L L
u

u

E
u u

L

E

L

PL

EA

P

A

B u / /

which indicates that bar 2 is in compression.

Check the results!

Notes:

 In this case, the calculated stresses in elements 1 and 2
are exact within the linear theory for 1-D bar structures.
It will not help if we further divide element 1 or 2 into
smaller finite elements.

 For tapered bars, averaged values of the cross-sectional
areas should be used for the elements.

 We need to find the displacements first in order to find
the stresses, since we are using the displacement based
FEM.


