Bar Elements in 2-D and 3-D Space

2-D Case

Local	Global
<i>x, y</i>	X, Y
$u_{i}^{'},v_{i}^{'}$	u_{i}, v_{i}
1 dof at node	2 dof's at node

Note: Lateral displacement v_i does not contribute to the stretch of the bar, within the linear theory.

Transformation

$$u'_{i} = u_{i} \cos \theta + v_{i} \sin \theta = \begin{bmatrix} l & m \end{bmatrix} \begin{Bmatrix} u_{i} \\ v_{i} \end{Bmatrix}$$

$$v'_{i} = -u_{i} \sin \theta + v_{i} \cos \theta = \begin{bmatrix} -m & l \end{bmatrix} \begin{Bmatrix} u_{i} \\ v_{i} \end{Bmatrix}$$

where $l = \cos \theta$, $m = \sin \theta$.

In matrix form,

or,

$$\mathbf{u}_{i}^{'} = \widetilde{\mathbf{T}}\mathbf{u}_{i}$$

where the transformation matrix

$$\widetilde{\mathbf{T}} = \begin{bmatrix} l & m \\ -m & l \end{bmatrix} \tag{27}$$

is *orthogonal*, that is, $\widetilde{\mathbf{T}}^{-1} = \widetilde{\mathbf{T}}^T$.

For the two nodes of the bar element, we have

or,

$$\mathbf{u}' = \mathbf{T}\mathbf{u}$$
 with $\mathbf{T} = \begin{bmatrix} \widetilde{\mathbf{T}} & \mathbf{0} \\ \mathbf{0} & \widetilde{\mathbf{T}} \end{bmatrix}$ (29)

The nodal forces are transformed in the same way,

$$\mathbf{f}' = \mathbf{T}\mathbf{f} \tag{30}$$

Stiffness Matrix in the 2-D Space

In the local coordinate system, we have

$$\frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_i \\ u_j \end{Bmatrix} = \begin{Bmatrix} f_i \\ f_j \end{Bmatrix}$$

Augmenting this equation, we write

$$\frac{EA}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_i \\ v_i \\ v_j \\ v_j \end{bmatrix} = \begin{cases} f_i \\ 0 \\ f_j \\ 0 \end{bmatrix}$$

or,

$$\mathbf{k}'\mathbf{u}' = \mathbf{f}'$$

Using transformations given in (29) and (30), we obtain

$$k'Tu = Tf$$

Multiplying both sides by \mathbf{T}^T and noticing that $\mathbf{T}^T\mathbf{T} = \mathbf{I}$, we obtain

$$\mathbf{T}^T \mathbf{k}' \mathbf{T} \mathbf{u} = \mathbf{f} \tag{31}$$

Thus, the element stiffness matrix \mathbf{k} in the global coordinate system is

$$\mathbf{k} = \mathbf{T}^T \mathbf{k} \mathbf{T} \tag{32}$$

which is a 4×4 symmetric matrix.

Explicit form,

$$\mathbf{k} = \frac{EA}{L} \begin{bmatrix} l^2 & lm & -l^2 & -lm \\ lm & m^2 & -lm & -m^2 \\ -l^2 & -lm & l^2 & lm \\ -lm & -m^2 & lm & m^2 \end{bmatrix}$$
(33)

Calculation of the *directional cosines l* and *m*:

$$l = \cos \theta = \frac{X_j - X_i}{L}, \qquad m = \sin \theta = \frac{Y_j - Y_i}{L}$$
 (34)

The structure stiffness matrix is assembled by using the element stiffness matrices in the usual way as in the 1-D case.

Element Stress

$$\boldsymbol{\sigma} = E\boldsymbol{\varepsilon} = E\mathbf{B} \begin{Bmatrix} u_i' \\ u_j' \end{Bmatrix} = E \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{bmatrix} l & m & 0 & 0 \\ 0 & 0 & l & m \end{bmatrix} \begin{Bmatrix} u_i \\ v_i \\ u_j \\ v_j \end{Bmatrix}$$

That is,

$$\sigma = \frac{E}{L} \begin{bmatrix} -l & -m & l & m \end{bmatrix} \begin{Bmatrix} u_i \\ v_i \\ u_j \\ v_j \end{Bmatrix}$$
(35)

Example 2.3

A simple plane truss is made of two identical bars (with E, A, and L), and loaded as shown in the figure. Find

- 1) displacement of node 2;
- 2) stress in each bar.

Solution:

This simple structure is used here to demonstrate the assembly and solution process using the bar element in 2-D space.

In local coordinate systems, we have

$$\mathbf{k}_{1}' = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \mathbf{k}_{2}'$$

These two matrices cannot be assembled together, because they are in different coordinate systems. We need to convert them to global coordinate system *OXY*.

Element 1:

$$\theta = 45^\circ, \quad l = m = \frac{\sqrt{2}}{2}$$

Using formula (32) or (33), we obtain the stiffness matrix in the global system

Element 2:

$$\theta = 135^{\circ}, \ l = -\frac{\sqrt{2}}{2}, \ m = \frac{\sqrt{2}}{2}$$

We have,

Assemble the structure FE equation,

$$\frac{EA}{2L} \begin{bmatrix}
1 & 1 & -1 & -1 & 0 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 \\
-1 & -1 & 2 & 0 & -1 & 1 \\
-1 & -1 & 0 & 2 & 1 & -1 \\
0 & 0 & -1 & 1 & 1 & -1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
u_1 \\ v_1 \\ v_2 \\ v_2 \\ u_3 \\ v_3
\end{bmatrix} = \begin{bmatrix}
F_{1X} \\ F_{1Y} \\ F_{2X} \\ F_{2Y} \\ F_{3X} \\ F_{3Y}
\end{bmatrix}$$

Load and boundary conditions (BC):

$$u_1 = v_1 = u_3 = v_3 = 0,$$
 $F_{2X} = P_1, F_{2Y} = P_2$

Condensed FE equation,

$$\frac{EA}{2L} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{Bmatrix} u_2 \\ v_2 \end{Bmatrix} = \begin{Bmatrix} P_1 \\ P_2 \end{Bmatrix}$$

Solving this, we obtain the displacement of node 2,

Using formula (35), we calculate the stresses in the two bars,

$$\sigma_{1} = \frac{E}{L} \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & -1 & 1 & 1 \end{bmatrix} \frac{L}{EA} \begin{Bmatrix} 0 \\ 0 \\ P_{1} \\ P_{2} \end{Bmatrix} = \frac{\sqrt{2}}{2A} (P_{1} + P_{2})$$

$$\sigma_2 = \frac{E}{L} \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix} \frac{L}{EA} \begin{Bmatrix} P_1 \\ P_2 \\ 0 \\ 0 \end{Bmatrix} = \frac{\sqrt{2}}{2A} (P_1 - P_2)$$

Check the results:

Look for the equilibrium conditions, symmetry, antisymmetry, etc.

Example 2.4 (Multipoint Constraint)

For the plane truss shown above,

$$P = 1000 \text{ kN}, \quad L = 1m, \quad E = 210 \, GPa,$$

 $A = 6.0 \times 10^{-4} \, m^2$ for elements 1 and 2,
 $A = 6\sqrt{2} \times 10^{-4} \, m^2$ for element 3.

Determine the displacements and reaction forces.

Solution:

We have an inclined roller at node 3, which needs special attention in the FE solution. We first assemble the global FE equation for the truss.

Element 1:

$$\theta = 90^{\circ}, l = 0, m = 1$$

$$\mathbf{k}_{1} = \frac{(210 \times 10^{9})(6.0 \times 10^{-4})}{1} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} (\text{N/m})$$

Element 2:

$$\theta = 0^{\circ}, \quad l = 1, \quad m = 0$$

$$\mathbf{k}_{2} = \frac{(210 \times 10^{9})(6.0 \times 10^{-4})}{1} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} (\text{N/m})$$

Element 3:

$$\theta = 45^{\circ}, \quad l = \frac{1}{\sqrt{2}}, \quad m = \frac{1}{\sqrt{2}}$$

$$\mathbf{k}_{3} = \frac{(210 \times 10^{9})(6\sqrt{2} \times 10^{-4})}{\sqrt{2}} \begin{bmatrix} 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \end{bmatrix}$$

$$(N / m)$$

The global FE equation is,

$$1260 \times 10^{5} \begin{bmatrix} 0.5 & 0.5 & 0 & 0 & -0.5 & -0.5 \\ 1.5 & 0 & -1 & -0.5 & -0.5 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 \\ 1.5 & 0.5 \end{bmatrix} \begin{bmatrix} u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3} \\ v_{3} \end{bmatrix} = \begin{bmatrix} F_{1X} \\ F_{1Y} \\ F_{2X} \\ F_{2X} \\ F_{3X} \\ F_{3Y} \end{bmatrix}$$

$$Sym.$$

Load and boundary conditions (BC):

$$u_1 = v_1 = v_2 = 0$$
, and $v_3' = 0$,
 $F_{2X} = P$, $F_{3x'} = 0$.

From the transformation relation and the BC, we have

$$v_3' = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{Bmatrix} u_3 \\ v_3 \end{Bmatrix} = \frac{\sqrt{2}}{2} (-u_3 + v_3) = 0,$$

that is,

$$u_3 - v_3 = 0$$

This is a multipoint constraint (MPC).

Similarly, we have a relation for the force at node 3,

$$F_{3x'} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{Bmatrix} F_{3X} \\ F_{3Y} \end{Bmatrix} = \frac{\sqrt{2}}{2} (F_{3X} + F_{3Y}) = 0,$$

that is,

$$F_{3X} + F_{3Y} = 0$$

Applying the load and BC's in the structure FE equation by 'deleting' 1st, 2nd and 4th rows and columns, we have

$$1260 \times 10^{5} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} u_{2} \\ u_{3} \\ v_{3} \end{bmatrix} = \begin{Bmatrix} P \\ F_{3X} \\ F_{3Y} \end{Bmatrix}$$

Further, from the MPC and the force relation at node 3, the equation becomes,

$$1260 \times 10^{5} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} u_{2} \\ u_{3} \\ u_{3} \end{bmatrix} = \begin{bmatrix} P \\ F_{3X} \\ -F_{3X} \end{bmatrix}$$

which is

$$1260 \times 10^{5} \begin{bmatrix} 1 & -1 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} P \\ F_{3X} \\ -F_{3X} \end{bmatrix}$$

The 3rd equation yields,

$$F_{3x} = -1260 \times 10^5 u_3$$

Substituting this into the 2nd equation and rearranging, we have

$$1260 \times 10^5 \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \begin{Bmatrix} P \\ 0 \end{Bmatrix}$$

Solving this, we obtain the displacements,

From the global FE equation, we can calculate the reaction forces,

$$\begin{cases}
F_{1X} \\
F_{1Y} \\
F_{2Y} \\
F_{3X} \\
F_{3Y}
\end{cases} = 1260 \times 10^{5} \begin{bmatrix} 0 & -0.5 & -0.5 \\
0 & -0.5 & -0.5 \\
0 & 0 & 0 \\
-1 & 1.5 & 0.5 \\
0 & 0.5 & 0.5 \end{bmatrix} \begin{pmatrix} u_{2} \\ u_{3} \\ v_{3} \end{pmatrix} = \begin{pmatrix} -500 \\ -500 \\ 0.0 \\ -500 \\ 500 \end{pmatrix} (kN)$$

Check the results!

A general multipoint constraint (MPC) can be described as,

$$\sum_{j} A_{j} u_{j} = 0$$

where A_j 's are constants and u_j 's are nodal displacement components. In the FE software, such as MSC/NASTRAN, users only need to specify this relation to the software. The software will take care of the solution.

Penalty Approach for Handling BC's and MPC's