Bar Elements in 2-D and 3-D Space
2-D Case

Y
- X
Local Global
X,y XY
u; ) V; u.,v,
1 dof at node 2 dof’s at node

Note: Lateral displacement v; does not contribute to the stretch
of the bar, within the linear theory.

Transformation

' Uu.
u, =u; cos@ +v,sinf =/ m]{ ’}
v,

1

. Uu.
v, =—u, sin@ + v, cos@ =[—m l]{ ’}
v,

1

where [/ = cosO, m=-sinf.
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In matrix form,
| [ .
L K
v, -m ||y,

u, = Tu,

or,

where the transformation matrix

N { [ m}
T= (27)
-m |

is orthogonal, thatis, T~ =T".

For the two nodes of the bar element, we have

e 1Y) — 1 A

u, I m 0 0]y
v, -m [ 0 0
b= b (28)
U, 0 0 [ m|u,
\v; 00 —-m ]|V,
or,
. . T 0
u =Tu with T = ~ (29)
0 T

The nodal forces are transformed in the same way,

f =Tf (30)
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Stiffness Matrix in the 2-D Space

In the local coordinate system, we have

EAl 1 —1]|u B f
Tl el

Augmenting this equation, we write

_1 0 —1 O_ru;\ rfi,\
EA[ 0 0 0 Ofv 0
— Y =y 0
L|-10 1 0|l |f
00 0 Ojv,] (0]
or,
ku =1

Using transformations given in (29) and (30), we obtain
k Tu=Tf

Multiplying both sides by T’ and noticing that T'T = I, we
obtain

T’k Tu=f 31)

Thus, the element stiffness matrix k in the global coordinate
system 1s

k=T'kKT (32)

which is a 4x4 symmetric matrix.
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Explicit form,

I 1 J J
P Im -1 —Im]
EA| Im mwm —Im -m’ (33)

Calculation of the directional cosines [ and m:

X, - X, Y -Y,

[ =cosf = , m=sinf=-~1—" (34)
L L

The structure stiffness matrix is assembled by using the element
stiffness matrices in the usual way as in the 1-D case.

Element Stress
rui\
u, 1 1]f m 0 0},
c=EeE=EBy  (=E|-—— — 1. (
U L L|0 0 [ m U
Vi)
That 1s,
rui
E v,
Gz—[—l -m | m]< > (35)
L u;
Vi)
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Example 2.3

A simple plane truss is made
of two identical bars (with E, 4, and
L), and loaded as shown in the
figure. Find

1) displacement of node 2;

2) stress in each bar.

Solution:

This simple structure is used
here to demonstrate the assembly
and solution process using the bar element in 2-D space.

In local coordinate systems, we have

. 1 -1 .
k, = E_A =k,
L|-1 1
These two matrices cannot be assembled together, because they

are in different coordinate systems. We need to convert them to
global coordinate system OXY.

Element I:

6-45, 1=m="2
2
Using formula (32) or (33), we obtain the stiffness matrix in the

global system
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: 1 I -1 -1
kl = TlTlel = E—A
2L

Element 2:

6 =135, Zz—%, m=

l\)‘s‘

We have,
U, v, Uy Vv,
1 -1 -1 1]
. E4l-1 1 1 -1
k. =T'kK.T, ===
2o ool -1 11 =1
1 -1 -1 1

11 -1 -1 0 071w (F,)
1 1 -1 -1 0 v | | E,
EAl=1 =1 2 0 =1 1 \lu| |F|
2L|-1 -1 0 2 1 —1l|v,[ |F,
0 0 -1 1 1 —1|lu| |F£,
100 1 =1 =1 1]{v] [Fy,
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Load and boundary conditions (BC):
=P

2

u =v, =u, =v, =0, F,,=P, F

1 2Y

Condensed FE equation,

EA|2 Ofju,| |P
2L10 2]|v,] |P
Solving this, we obtain the displacement of node 2,
P

()-{e]

Using formula (35), we calculate the stresses in the two bars,

rO\
0
1 E([ 1 -1 1 1]i< $=£(P1+P2)
L EA|P| 24
)
fl)l\
_E\2 P 2
=7 [1 -1 -1 1]—<02$:ﬂ(13—13)
kO)
Check the results:

Look for the equilibrium conditions, symmetry,
antisymmetry, etc.
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Example 2.4 (Multipoint Constraint)

For the plane truss shown above,
P=1000kN, L=1m, E=210GPa,
A=60x10"m> for elements 1 and 2,
A=632x10"m* for element 3.
Determine the displacements and reaction forces.

Solution:

We have an inclined roller at node 3, which needs special
attention in the FE solution. We first assemble the global FE
equation for the truss.

Element I:

6=90", =0, m=1
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u,
K
K :(210><109)(6.O><10_4) 0
: 1 0
0
Element 2:
0=0°, [=1 m=0
u2
1
K :(210><109)(6.0><10_4) 0
? 1 —1
0
Element 3:

1 |

0=45", |I=—, m=—

J2 V2

u,
05
” (210 10°)(652 x 107*)| 0.5
3 J2 - 05
—05

Vi U, W,
0 0 O]
ol (N /m)
0O 0 O
-1 0 1|
V, U VY
0 -1 0]
0O 0 O
o 1 0 (N/m)
0 0 0]
Vi U, Vi
05 -05 —-05]
05 —-05 -05
-05 05 05
—-05 05 0.5 |
(N / m)
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The global FE equation is,

1260 x 10°

Load and boundary conditions (BC):

05

Sym.

05 0 O
15 0 -1
1 O

1

-05
-05
-1
0
1.5

u,=v,=v,=0, and v, =0,
Fy =P, F, =0

—05]
-05
0
0
0.5
0.5

From the transformation relation and the BC, we have

that 1s,

3

u,—v, =0

3

12 2
ST 2 w2

This is a multipoint constraint (MPC).

(—uy, +v;) =0,

Similarly, we have a relation for the force at node 3,

F =

3x'

that 1s,

T 2]
2 2 |A,

FsX+F3Y:O

V2
2

(Fix

+F,)=0,

~ > ~ >

SO0 0Ty

S

ST

~
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Applying the load and BC’s in the structure FE equation by
‘deleting’ 1%, 2™ and 4™ rows and columns, we have
1 -1 0 |(u, P
1260x10°| =1 15 05Ku, r=<F,,
0 05 05]|v, F,

Further, from the MPC and the force relation at node 3, the
equation becomes,

1 -1 07(u P
1260x10°| =1 15 05{u,t=1 F,,
0 05 05||u,] |-F,
which is
1 —1] P
5 u2
1260x10°| -1 2 { }: F,,
u
L 0 1 i 3 _FsX
The 3™ equation yields,

F,, =-1260x10u,

X —

Substituting this into the 2" equation and rearranging, we have

S 1 —1|{u, P
1260 x 10 =
-1 3 |lu, 0

Solving this, we obtain the displacements,
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uy | 1 3P| | 001191

u,|  2520x10° | P | ]0.003968
From the global FE equation, we can calculate the reaction
forces,

(F | [0 —-05 -05] (—500)]
F, 0 -05 —-05|(u, —500
< F,, +=1260x10| 0 0 0 Ru,p=9 00 ¢ (kN)
F, -1 15 05 ||v, —500
| Fyy | |0 05 05 | 500
Check the results!

A general multipoint constraint (MPC) can be described as,
Z Au, =0
J

where A4;’s are constants and u;’s are nodal displacement
components. In the FE software, such as MSC/NASTRAN,
users only need to specify this relation to the software. The
software will take care of the solution.

Penalty Approach for Handling BC’s and MPC’s
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