Bar Elements in 2-D and 3-D Space

2-D Case

Local	Global
x, y	X, Y
$u_{i}^{\prime}, v_{i}^{\prime}$	u_{i}, v_{i}
1 dof at node	2 dof's at node

Note: Lateral displacement v_{i} does not contribute to the stretch of the bar, within the linear theory.

Transformation

$$
\begin{aligned}
& u_{i}^{\prime}=u_{i} \cos \theta+v_{i} \sin \theta=\left[\begin{array}{ll}
l & m
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right\} \\
& v_{i}^{\prime}=-u_{i} \sin \theta+v_{i} \cos \theta=\left[\begin{array}{ll}
-m & l
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right\}
\end{aligned}
$$

where $l=\cos \theta, m=\sin \theta$.

In matrix form,

$$
\left\{\begin{array}{l}
u_{i}^{\prime} \tag{26}\\
v_{i}^{\prime}
\end{array}\right\}=\left[\begin{array}{cc}
l & m \\
-m & l
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right\}
$$

Or,

$$
\mathbf{u}_{i}^{\prime}=\widetilde{\mathbf{T}} \mathbf{u}_{i}
$$

where the transformation matrix

$$
\widetilde{\mathbf{T}}=\left[\begin{array}{cc}
l & m \tag{27}\\
-m & l
\end{array}\right]
$$

is orthogonal, that is, $\widetilde{\mathbf{T}}^{-1}=\widetilde{\mathbf{T}}^{T}$.
For the two nodes of the bar element, we have

$$
\left\{\begin{array}{l}
u_{i}^{\prime} \tag{28}\\
v_{i}^{\prime} \\
u_{j}^{\prime} \\
v_{j}^{\prime}
\end{array}\right\}=\left[\begin{array}{cccc}
l & m & 0 & 0 \\
-m & l & 0 & 0 \\
0 & 0 & l & m \\
0 & 0 & -m & l
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j}
\end{array}\right\}
$$

or,

$$
\mathbf{u}^{\prime}=\mathbf{T} \mathbf{u} \quad \text { with } \mathbf{T}=\left[\begin{array}{cc}
\widetilde{\mathbf{T}} & \mathbf{0} \tag{29}\\
\mathbf{0} & \widetilde{\mathbf{T}}
\end{array}\right]
$$

The nodal forces are transformed in the same way,

$$
\begin{equation*}
\mathbf{f}^{\prime}=\mathbf{T f} \tag{30}
\end{equation*}
$$

Stiffness Matrix in the 2-D Space

In the local coordinate system, we have

$$
\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{i}^{\prime} \\
u_{j}^{\prime}
\end{array}\right\}=\left\{\begin{array}{l}
f_{i}^{\prime} \\
f_{j}^{\prime}
\end{array}\right\}
$$

Augmenting this equation, we write

$$
\frac{E A}{L}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{i}^{\prime} \\
v_{i}^{\prime} \\
u_{j}^{\prime} \\
v_{j}^{\prime}
\end{array}\right]=\left\{\begin{array}{c}
f_{i}^{\prime} \\
0 \\
f_{j}^{\prime} \\
0
\end{array}\right\}
$$

Or,

$$
\mathbf{k}^{\prime} \mathbf{u}^{\prime}=\mathbf{f}^{\prime}
$$

Using transformations given in (29) and (30), we obtain

$$
\mathbf{k}^{\prime} \mathbf{T u}=\mathbf{T f}
$$

Multiplying both sides by \mathbf{T}^{T} and noticing that $\mathbf{T}^{T} \mathbf{T}=\mathbf{I}$, we obtain

$$
\begin{equation*}
\mathbf{T}^{T} \mathbf{k}^{\prime} \mathbf{T} \mathbf{u}=\mathbf{f} \tag{31}
\end{equation*}
$$

Thus, the element stiffness matrix \mathbf{k} in the global coordinate system is

$$
\begin{equation*}
\mathbf{k}=\mathbf{T}^{T} \mathbf{k}^{\prime} \mathbf{T} \tag{32}
\end{equation*}
$$

which is a 4×4 symmetric matrix.

Explicit form,

$$
\mathbf{k}=\frac{E A}{L}\left[\begin{array}{cccc}
u_{i} & v_{i} & u_{j} & v_{j} \tag{33}\\
{\left[\begin{array}{cccc}
l^{2} & l m & -l^{2} & -l m \\
l m & m^{2} & -l m & -m^{2} \\
-l^{2} & -l m & l^{2} & l m \\
-l m & -m^{2} & l m & m^{2}
\end{array}\right]}
\end{array}\right.
$$

Calculation of the directional cosines l and m :

$$
\begin{equation*}
l=\cos \theta=\frac{X_{j}-X_{i}}{L}, \quad m=\sin \theta=\frac{Y_{j}-Y_{i}}{L} \tag{34}
\end{equation*}
$$

The structure stiffness matrix is assembled by using the element stiffness matrices in the usual way as in the 1-D case.

Element Stress

$$
\sigma=E \boldsymbol{\varepsilon}=E \mathbf{B}\left\{\begin{array}{l}
u_{i}^{\prime} \\
u_{j}^{\prime}
\end{array}\right\}=E\left[\begin{array}{ll}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right]\left[\begin{array}{cccc}
l & m & 0 & 0 \\
0 & 0 & l & m
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j}
\end{array}\right\}
$$

That is,

$$
\sigma=\frac{E}{L}\left[\begin{array}{llll}
-l & -m & l & m
\end{array}\right]\left\{\begin{array}{l}
u_{i} \tag{35}\\
v_{i} \\
u_{j} \\
v_{j}
\end{array}\right\}
$$

Example 2.3

A simple plane truss is made of two identical bars (with E, A, and L), and loaded as shown in the figure. Find

1) displacement of node 2 ;
2) stress in each bar.

Solution:

This simple structure is used here to demonstrate the assembly and solution process using the bar element in 2-D space.

In local coordinate systems, we have

$$
\mathbf{k}_{1}^{\prime}=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]=\mathbf{k}_{2}^{\prime}
$$

These two matrices cannot be assembled together, because they are in different coordinate systems. We need to convert them to global coordinate system OXY.

Element 1:

$$
\theta=45^{\circ}, \quad l=m=\frac{\sqrt{2}}{2}
$$

Using formula (32) or (33), we obtain the stiffness matrix in the global system

$$
\mathbf{k}_{1}=\mathbf{T}_{1}^{T} \mathbf{k}_{1}^{\prime} \mathbf{T}_{1}=\frac{E A}{2 L}\left[\begin{array}{cccc}
u_{1} & v_{1} & u_{2} & v_{2} \\
1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1
\end{array}\right]
$$

Element 2:

$$
\theta=135^{\circ}, l=-\frac{\sqrt{2}}{2}, m=\frac{\sqrt{2}}{2}
$$

We have,

$$
\mathbf{k}_{2}=\mathbf{T}_{2}^{T} \mathbf{k}_{2}^{\prime} \mathbf{T}_{2}=\frac{E A}{2 L}\left[\begin{array}{cccc}
u_{2} & v_{2} & u_{3} & v_{3} \\
{\left[\begin{array}{ccc}
1 & -1 & -1
\end{array}\right.} \\
-1 & 1 & 1 & -1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] ~ ? ~
$$

Assemble the structure FE equation,

$$
\frac{E A}{2 L}\left[\begin{array}{cccccc}
u_{1} & v_{1} & u_{2} & v_{2} & u_{3} & v_{3} \\
{\left[\begin{array}{cccccc}
1 & 1 & -1 & -1 & 0 & 0 \\
1 & 1 & -1 & -1 & 0 & 0 \\
-1 & -1 & 2 & 0 & -1 & 1 \\
-1 & -1 & 0 & 2 & 1 & -1 \\
0 & 0 & -1 & 1 & 1 & -1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3}
\end{array}\right\}=\left\{\begin{array}{l}
F_{1 X} \\
F_{1 Y} \\
F_{2 X} \\
F_{2 Y} \\
F_{3 X} \\
F_{3 Y}
\end{array}\right\}}
\end{array}\right.
$$

Load and boundary conditions (BC):

$$
u_{1}=v_{1}=u_{3}=v_{3}=0, \quad F_{2 X}=P_{1}, \quad F_{2 Y}=P_{2}
$$

Condensed FE equation,

$$
\frac{E A}{2 L}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
v_{2}
\end{array}\right\}=\left\{\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right\}
$$

Solving this, we obtain the displacement of node 2,

$$
\left\{\begin{array}{l}
u_{2} \\
v_{2}
\end{array}\right\}=\frac{L}{E A}\left\{\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right\}
$$

Using formula (35), we calculate the stresses in the two bars,

$$
\begin{aligned}
& \sigma_{1}=\frac{E}{L} \frac{\sqrt{2}}{2}\left[\begin{array}{llll}
-1 & -1 & 1 & 1
\end{array}\right] \frac{L}{E A}\left\{\begin{array}{l}
0 \\
0 \\
P_{1} \\
P_{2}
\end{array}\right\}=\frac{\sqrt{2}}{2 A}\left(P_{1}+P_{2}\right) \\
& \sigma_{2}=\frac{E}{L} \frac{\sqrt{2}}{2}\left[\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right] \frac{L}{E A}\left\{\begin{array}{l}
P_{1} \\
P_{2} \\
0 \\
0
\end{array}\right\}=\frac{\sqrt{2}}{2 A}\left(P_{1}-P_{2}\right)
\end{aligned}
$$

Check the results:

Look for the equilibrium conditions, symmetry, antisymmetry, etc.

Example 2.4 (Multipoint Constraint)

For the plane truss shown above,

$$
\begin{aligned}
& P=1000 \mathrm{kN}, \quad L=1 \mathrm{~m}, \quad E=210 \mathrm{GPa}, \\
& A=6.0 \times 10^{-4} \mathrm{~m}^{2} \quad \text { for elements } 1 \text { and } 2, \\
& A=6 \sqrt{2} \times 10^{-4} \mathrm{~m}^{2} \quad \text { for element } 3 .
\end{aligned}
$$

Determine the displacements and reaction forces.

Solution:

We have an inclined roller at node 3, which needs special attention in the FE solution. We first assemble the global FE equation for the truss.

Element 1:

$$
\theta=90^{\circ}, \quad l=0, \quad m=1
$$

$$
\mathbf{k}_{1}=\frac{\left(210 \times 10^{9}\right)\left(6.0 \times 10^{-4}\right)}{1}\left[\begin{array}{cccc}
u_{1} & v_{1} & u_{2} & v_{2} \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right](\mathrm{N} / \mathrm{m})
$$

Element 2:

$$
\begin{aligned}
& \theta=0^{o}, \quad l=1, \quad m=0 \\
& u_{2} \begin{array}{c}
v_{2}
\end{array} u_{3} v_{3} \\
& \mathbf{k}_{2}=\frac{\left(210 \times 10^{9}\right)\left(6.0 \times 10^{-4}\right)}{1}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right](\mathrm{N} / \mathrm{m})
\end{aligned}
$$

Element 3:

$$
\begin{gathered}
\theta=45^{\circ}, \quad l=\frac{1}{\sqrt{2}}, \quad m=\frac{1}{\sqrt{2}} \\
\mathbf{k}_{3}=\frac{\left(210 \times 10^{9}\right)\left(6 \sqrt{2} \times 10^{-4}\right)}{\sqrt{2}}\left[\begin{array}{cccc}
0.5 & v_{1} & u_{3} & v_{3} \\
0.5 & -0.5 & -0.5 \\
-0.5 & -0.5 & -0.5 & -0.5 \\
-0.5 & -0.5 & 0.5 & 0.5
\end{array}\right] \\
(\mathrm{N} / \mathrm{m})
\end{gathered}
$$

The global FE equation is,
$1260 \times 10^{5}\left[\begin{array}{cccccc}0.5 & 0.5 & 0 & 0 & -0.5 & -0.5 \\ & 1.5 & 0 & -1 & -0.5 & -0.5 \\ & & 1 & 0 & -1 & 0 \\ & & & 1 & 0 & 0 \\ & & & & 1.5 & 0.5 \\ \text { Sym. } & & & & 0.5\end{array}\right]\left\{\begin{array}{l}u_{1} \\ v_{1} \\ u_{2} \\ v_{2} \\ u_{3} \\ v_{3}\end{array}\right\}=\left\{\begin{array}{l}F_{1 X} \\ F_{1 Y} \\ F_{2 X} \\ F_{2 Y} \\ F_{3 X} \\ F_{3 Y}\end{array}\right\}$

Load and boundary conditions (BC):

$$
\begin{aligned}
& u_{1}=v_{1}=v_{2}=0, \text { and } v_{3}^{\prime}=0, \\
& F_{2 X}=P, F_{3 x^{\prime}}=0 .
\end{aligned}
$$

From the transformation relation and the BC , we have

$$
v_{3}^{\prime}=\left[\begin{array}{cc}
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]\left\{\begin{array}{l}
u_{3} \\
v_{3}
\end{array}\right\}=\frac{\sqrt{2}}{2}\left(-u_{3}+v_{3}\right)=0,
$$

that is,

$$
u_{3}-v_{3}=0
$$

This is a multipoint constraint (MPC).
Similarly, we have a relation for the force at node 3,

$$
F_{3 x^{\prime}}=\left[\begin{array}{ll}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]\left\{\begin{array}{l}
F_{3 X} \\
F_{3 Y}
\end{array}\right\}=\frac{\sqrt{2}}{2}\left(F_{3 X}+F_{3 Y}\right)=0,
$$

that is,

$$
F_{3 X}+F_{3 Y}=0
$$

Applying the load and BC 's in the structure FE equation by 'deleting' $1^{\text {st }}, 2^{\text {nd }}$ and $4^{\text {th }}$ rows and columns, we have

$$
1260 \times 10^{5}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1.5 & 0.5 \\
0 & 0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
u_{2} \\
u_{3} \\
v_{3}
\end{array}\right\}=\left\{\begin{array}{c}
P \\
F_{3 X} \\
F_{3 Y}
\end{array}\right\}
$$

Further, from the MPC and the force relation at node 3, the equation becomes,

$$
1260 \times 10^{5}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1.5 & 0.5 \\
0 & 0.5 & 0.5
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
P \\
F_{3 X} \\
-F_{3 X}
\end{array}\right\}
$$

which is

$$
1260 \times 10^{5}\left[\begin{array}{cc}
1 & -1 \\
-1 & 2 \\
0 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
P \\
F_{3 X} \\
-F_{3 X}
\end{array}\right\}
$$

The $3^{\text {rd }}$ equation yields,

$$
F_{3 X}=-1260 \times 10^{5} u_{3}
$$

Substituting this into the $2^{\text {nd }}$ equation and rearranging, we have

$$
1260 \times 10^{5}\left[\begin{array}{cc}
1 & -1 \\
-1 & 3
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{l}
P \\
0
\end{array}\right\}
$$

Solving this, we obtain the displacements,

$$
\left\{\begin{array}{l}
u_{2} \tag{m}\\
u_{3}
\end{array}\right\}=\frac{1}{2520 \times 10^{5}}\left\{\begin{array}{c}
3 P \\
P
\end{array}\right\}=\left\{\begin{array}{c}
0.01191 \\
0.003968
\end{array}\right\}
$$

From the global FE equation, we can calculate the reaction forces,

$$
\left\{\begin{array}{l}
F_{1 X} \\
F_{1 Y} \\
F_{2 Y} \\
F_{3 X} \\
F_{3 Y}
\end{array}\right\}=1260 \times 10^{5}\left[\begin{array}{ccc}
0 & -0.5 & -0.5 \\
0 & -0.5 & -0.5 \\
0 & 0 & 0 \\
-1 & 1.5 & 0.5 \\
0 & 0.5 & 0.5
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3} \\
v_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-500 \\
-500 \\
0.0 \\
-500 \\
500
\end{array}\right\}(\mathrm{kN})
$$

Check the results!

A general multipoint constraint (MPC) can be described as,

$$
\sum_{j} A_{j} u_{j}=0
$$

where A_{j} 's are constants and u_{j} 's are nodal displacement components. In the FE software, such as MSC/NASTRAN, users only need to specify this relation to the software. The software will take care of the solution.

Penalty Approach for Handling BC's and MPC's

