
Chapter 4a – Development of Beam Equations 

Learning Objectives
• To  review the basic concepts of beam bending

• To derive the stiffness matrix for a beam element

• To demonstrate beam analysis using the direct stiffness
method

• To illustrate the effects of shear deformation in shorter
beams

• To introduce the work-equivalence method for replacing
distributed loading by a set of discrete loads

• To introduce the general formulation for solving beam
problems with distributed loading acting on them

• To analyze beams with distributed loading acting on
them

Chapter 4a – Development of Beam Equations 

Learning Objectives
• To compare the finite element solution to an exact

solution for a beam

• To derive the stiffness matrix for the beam element with
nodal hinge

• To show how the potential energy method can be used
to derive the beam element equations

• To apply Galerkin’s residual method for deriving the
beam element equations
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Development of Beam Equations
In this section, we will develop the stiffness matrix for a beam 

element, the most common of all structural elements. 

The beam element is considered to be straight and to have 
constant cross-sectional area. 

Development of Beam Equations
We will derive the beam element stiffness matrix by using the 

principles of simple beam theory. 

The degrees of freedom associated with a node of a beam 
element are a transverse displacement and a rotation. 
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Development of Beam Equations
We will discuss procedures for handling distributed loading 

and concentrated nodal loading.

We will include the nodal shear forces and bending moments 
and the resulting shear force and bending moment diagrams 
as part of the total solution.

Development of Beam Equations

We will develop the beam bending element equations using 
the potential energy approach. 

Finally, the Galerkin residual method is applied to derive the 
beam element equations 
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Beam Stiffness

Consider the beam element shown below. 

The beam is of length L with axial local coordinate x and 
transverse local coordinate y. 

The local transverse nodal displacements are given by vi and 
the rotations by ϕi. The local nodal forces are given by fiy and 
the bending moments by mi. 

3. Forces are positive in the positive y direction.   

Beam Stiffness

At all nodes, the following sign conventions are used on the 
element level:

1. Moments are positive in the counterclockwise direction.   

2. Rotations are positive in the counterclockwise direction.   

4. Displacements are positive in the positive y direction. 
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At all nodes, the following sign conventions are used on the 
global level:

1. Bending moments m are positive if they cause the beam 
to bend concave up. 

2. Shear forces V are positive is the cause the beam to 
rotate clockwise.    

Beam Stiffness

Beam Stiffness

(+) Bending Moment

(-) Bending Moment
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Beam Stiffness

(+) Shear Force

(-) Shear Force

Beam Stiffness

The differential equation governing simple linear-elastic beam 
behavior can be derived as follows. Consider the beam 
shown below.
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Beam Stiffness

The differential equation governing simple linear-elastic beam 
behavior can be derived as follows. Consider the beam 
shown below.

Write the equations of equilibrium for the differential element:

0right sideM
 

0yF 

( )w x dx

2

dx 
 
 

  ( )
2

dx
M M dM Vdx w x dx

        
 

( ) ( )V V dV w x dx    0

Beam Stiffness

From force and moment equilibrium of a differential beam 
element, we get:

0 0right sideM Vdx dM     

0 0yF wdx dV    

d dM
w

dx dx
    
 

or
dM

V
dx



or
dV

w
dx
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Beam Stiffness

The curvature  of the beam is related to the moment by:

1 M

EI



 

where  is the radius of the deflected curve, v is the 
transverse displacement function in the y direction, E is the 
modulus of elasticity, and I is the principle moment of inertia 
about y direction, as shown below.

Beam Stiffness

The curvature,  for small slopes               is given as:
dv

dx
 

2

2

d v

dx
 

Therefore:
2 2

2 2

d v M d v
M EI

dx EI dx
  

Substituting the moment expression into the moment-load 
equations gives:

 
2 2

2 2

d d v
EI w x

dx dx

 
  

 

For constant values of EI, the above equation reduces to:

 
4

4

d v
EI w x

dx
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Beam Stiffness

Step 1 - Select Element Type

Step 2 - Select a Displacement Function

Assume the transverse displacement function v is:

3 2
1 2 3 4v a x a x a x a   

The number of coefficients in the displacement function ai is 
equal to the total number of degrees of freedom associated 
with the element (displacement and rotation at each node). 
The boundary conditions are:

1( 0)v x v 

1
0x

dv

dx




 2
x L

dv

dx






2( )v x L v 
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We will consider the linear-elastic beam element shown below.

Formulation



Applying the boundary conditions and solving for the unknown 
coefficients gives:

Solving these equations for a1, a2, a3, and a4 gives:

1 4(0)v v a  3 2
2 1 2 3 4( )v L v a L a L a L a    

1 3

(0)dv
a

dx
  2

2 1 2 3

( )
3 2

dv L
a L a L a

dx
   

    3
1 2 1 23 2

2 1
v v v x

L L
       

    2
1 2 1 2 1 12

3 1
2v v x x v

L L
           

In matrix form the above equations are:

where

 [ ]v N d

   
1

1
1 2 3 4

2

2

[ ]

v

d N N N N N
v





 
 
   
 
  

   3 2 3 3 2 2 3
1 23 3

1 1
2 3 2N x x L L N x L x L xL

L L
     

   3 2 3 2 2
3 43 3

1 1
2 3N x x L N x L x L

L L
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N1, N2, N3, and N4 are called the interpolation functions for a 
beam element.
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The stress-displacement relationship is:

We can relate the axial displacement to the transverse 
displacement by considering the beam element shown 
below:

where u is the axial displacement function. 

 ,x

du
x y

dx
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Step 3 - Define the Strain/Displacement 
and Stress/Strain Relationships

dv
u y

dx
 

and Stress/Strain Relationships

One of the basic assumptions in simple beam theory is that 
planes remain planar after deformation, therefore:

Moments and shears are related to the transverse 
displacement as:

 ,x

du
x y

dx
 

 
2

2

d v
m x EI

dx

 
  

 
 

3

3

d v
V x EI

dx

 
  

 

2

2

d v
y

dx
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Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

Use beam theory sign convention for shear force and bending 
moment.

V+ V+

M+M+

Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

Using beam theory sign convention for shear force and 
bending moment we obtain the following equations:

 
3

1 1 1 2 23 3

0

12 6 12 6y

x

d v EI
f V EI v L v L

dx L
 



     

 
3

2 1 1 2 23 3
12 6 12 6y

x L

d v EI
f V EI v L v L

dx L
 



        

 
2

2 2
1 1 1 2 22 3

0

6 4 6 2
x

d v EI
m m EI Lv L Lv L

dx L
 



       

 
2

2 2
2 1 1 2 22 3

6 2 6 4
x L

d v EI
m m EI Lv L Lv L

dx L
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Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

In matrix form the above equations are:

1 1
2 2

1 1
3

2 2
2 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

y

y

f vL L

m L L L LEI
f vL L L

m L L L L





    
                         

where the stiffness matrix is:

2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

L L

L L L LEI

L L L

L L L L

 
  
   
  

k

1 1

1 1

2 2

2 2

y

y

f v

m
k

f v

m





   
   
      
   
      

Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

Beam stiffness based on Timoshenko Beam Theory

The total deflection of the beam at a point x consists of two 
parts, one caused by bending and one by shear force. The 
slope of the deflected curve at a point x is:

   dv
x x

dx
  

Chapter 4 - Development of Beam Equations - Part 1 14/39



Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

Beam stiffness based on Timoshenko Beam Theory

The relationship between bending moment and bending 
deformation is:

   d x
M x EI

dx




Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

Beam stiffness based on Timoshenko Beam Theory

The relationship between shear force and shear deformation is:

   sV x k AG x

where ksA is the shear area. 
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Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

Beam stiffness based on Timoshenko Beam Theory

You can review the details in your book, but by including the 
effects of shear deformations into the relationship between 
forces and nodal displacements a modified elemental 
stiffness can be developed. 

Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix 
and Equations

Beam stiffness based on Timoshenko Beam Theory

 
 

 

 

 

2 2

3

2 2

6 612 12

4 26 6

6 61 12 12

2 46 6

L L

L LL LEI
L LL

L LL L

 


 

 
   
   
   

k 2

12

s

EI

k AGL
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Beam Stiffness

Step 5 - Assemble the Element Equations 
and Introduce Boundary Conditions

Consider a beam modeled by two beam elements (do not 
include shear deformations):

Assume the EI to be constant throughout the beam. A force of 
1,000 lb and moment of 1,000 lb-ft are applied to the mid-
point of the beam. 

Beam Stiffness

Step 5 - Assemble the Element Equations 
and Introduce Boundary Conditions

The beam element stiffness matrices are:
1 1 2 2

2 2
(1)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI

L L L

L L L L

 

 
  
   
  

k

2 2 3 3

2 2
(2)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI

L L L

L L L L

 

 
  
   
  

k
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1 1

2 2
1 1

2 2

3 2 2 2 2
2 2

3 3

2 2
33

12 6 12 6 0 0

6 4 6 2 0 0

12 6 12 12 6 6 12 6

6 2 6 6 4 4 6 2

0 0 12 6 12 6

0 0 6 2 6 4

y

y

y

F vL L
M L L L L
F vL L L LEI
M L L L L L L L L L

F vL L

L L L LM







    
        
                      
      
          

Beam Stiffness

Step 5 - Assemble the Element Equations 
and Introduce Boundary Conditions

In this example, the local coordinates coincide with the global 
coordinates of the whole beam (therefore there is no 
transformation required for this problem). 

The total stiffness matrix can be assembled as:

Element 1 Element 2

Beam Stiffness

Step 5 - Assemble the Element Equations 
and Introduce Boundary Conditions

The boundary conditions are: 1 1 3 0v v  

1 1

2 2
1 1

2 2

3 2 2 2 2
2 2

3 3

2 2
33

12 6 12 6 0 0

6 4 6 2 0 0

12 6 12 12 6 6 12 6

6 2 6 6 4 4 6 2

0 0 12 6 12 6

0 0 6 2 6 4

y

y

y

F vL L
M L L L L
F vL L L LEI
M L L L L L L L L L

F vL L

L L L LM







    
        
                      
      
          

2

2

3

0

0

0

v
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Beam Stiffness

Step 5 - Assemble the Element Equations 
and Introduce Boundary Conditions

By applying the boundary conditions the beam equations 
reduce to:

2
2 2

23
2 2

3

1,000 24 0 6

1,000 0 8 2

0 6 2 4

lb L v
EI

lb ft L L
L

L L L




     
        
         

Beam Stiffness

Step 6 - Solve for the Unknown Degrees of Freedom

Solving the above equations gives:

2 2 3

3 2 2 2875 375 125 625 125 125

12 4

L L L L L L
v in rad rad

EI EI EI
     

  

Step 7 - Solve for the Element Strains and Stresses

 
2

2

d v
m x EI

dx

 
  

 

1

2
1

2
2

2

v

d N
EI

vdx





 
      

  
  

The second derivative of N is linear; therefore m(x) is linear.
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Beam Stiffness

Step 6 - Solve for the Unknown Degrees of Freedom

Solving the above equations gives:

2 2 3

3 2 2 2875 375 125 625 125 125

12 4

L L L L L L
v in rad rad

EI EI EI
   

     

Step 7 - Solve for the Element Strains and Stresses

 
3

3

d v
V x EI

dx

 
  

 

1

3
1

2
2

2

v

d N
EI

vdx





 
      

  
  

The third derivative of N is a constant; therefore V(x) is 
constant.

Beam Stiffness

 
2

2

d v
m x EI

dx

 
  

 

1

2
1

2
2

2

v

d N
EI

vdx





 
      

  
  

Step 7 - Solve for the Element Strains and Stresses

 2 2
1 1 1 2 23

6 4 6 2
EI

m Lv L Lv L
L

    

 2 2
2 1 1 2 23

6 2 6 4
EI

m Lv L Lv L
L

    

Assume L = 120 in, E = 29x106 psi, and I = 100 in4:

Element #1:

3,875 lb ft 

3,562.5 lb ft 

5 4
2 2 30.0433 7.758 10 5.586 10v in rad rad        
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Beam Stiffness

 
2

2

d v
m x EI

dx

 
  

 

1

2
1

2
2

2

v

d N
EI

vdx





 
      

   
  

Step 7 - Solve for the Element Strains and Stresses

 2 2
2 2 2 3 33

6 4 6 2
EI

m Lv L Lv L
L

    

 2 2
3 2 2 3 33

6 2 6 4
EI

m Lv L Lv L
L

    

Assume L = 120 in, E = 29x106 psi, and I = 100 in4:

Element #2:

2,562.5 lb ft  

0

5 4
2 2 30.0433 7.758 10 5.586 10v in rad rad        

Beam Stiffness

Step 7 - Solve for the Element Strains and Stresses

Assume L = 120 in, E = 29x106 psi, and I = 100 in4:

Element #1:

743.75 lb

743.75 lb 

5 4
2 2 30.0433 7.758 10 5.586 10v in rad rad        

 
3

3

d v
V x EI

dx

 
  

 

1

3
1

2
2

2

v

d N
EI

vdx





 
      

   
  

 1 1 1 2 23
12 6 12 6y

EI
f v L v L

L
    

 2 1 1 2 23
12 6 12 6y

EI
f v L v L

L
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Beam Stiffness

Step 7 - Solve for the Element Strains and Stresses

Assume L = 120 in, E = 29x106 psi, and I = 100 in4:

Element #2:

256.25 lb 

256.25 lb

5 4
2 2 30.0433 7.758 10 5.586 10v in rad rad        

 
3

3

d v
V x EI

dx

 
  

 

1

3
1

2
2

2

v

d N
EI

vdx





 
      

   
  

 2 2 2 3 33
12 6 12 6y

EI
f v L v L

L
    

 3 2 2 3 33
12 6 12 6y

EI
f v L v L

L
     

Beam Stiffness

Step 7 - Solve for the Element Strains and Stresses

3,875 lb ft 

3,562.5 lb ft
2,562.5 lb ft

743.75 lb

256.25 lb

1,000F lb  

1,000M lb ft   
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Beam Stiffness

Example 1 - Beam Problem

Consider the beam shown below. Assume that EI is constant 
and the length is 2L (no shear deformation).

The beam element stiffness matrices are:

1 1 2 2

2 2
(1)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI

L LL

L L L L

 

 
  
   
  

k

2 2 3 3

2 2
(2)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI

L LL

L L L L

 

 
  
   
  

k

Beam Stiffness

Example 1 - Beam Problem

The local coordinates coincide with the global coordinates of 
the whole beam (therefore there is no transformation required 
for this problem). 

The total stiffness matrix can be assembled as:

1 1

2 2
1 1

2 2

3 2 2 2
2 2

3 3

2 2
33

12 6 12 6 0 0

6 4 6 2 0 0

12 6 24 0 12 6

6 2 0 8 6 2

0 0 12 6 12 6

0 0 6 2 6 4

y

y

y

F vL L
M L L L L
F vL LEI
M L L L L L L

F vL L

L L L LM







    
        
                
      
          

Element 1 Element 2
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Beam Stiffness

Example 1 - Beam Problem

The boundary conditions are: 2 3 3 0v v   

1 1

2 2
1 1

2 2

3 2 2 2
2 2

3 3

2 2
33

12 6 12 6 0 0

6 4 6 2 0 0

12 6 24 0 12 6

6 2 0 8 6 2

0 0 12 6 12 6

0 0 6 2 6 4

y

y

y

F vL L
M L L L L
F vL LEI
M L L L L L L

F vL L

L L L LM







    
        
                
      
          

1

1

2

0

0

0

v





 
 
 
 
 
 
 
 
 

Beam Stiffness

By applying the boundary conditions the beam equations 
reduce to:

1
2 2

13
2 2

2

12 6 6

0 6 4 2

0 6 2 8

P L L v
EI

L L L
L

L L L




     
        
         

Solving the above equations gives:
1 2

1

2

7

3

3
4

1

L

v
PL

EI
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Beam Stiffness

Example 1 - Beam Problem

The positive signs for the rotations indicate that both are in the 
counterclockwise direction. 

The negative sign on the displacement indicates a deformation 
in the -y direction.

7
1 3

2 2
1

2

2 2 2
2

3

2 2
3

12 6 12 6 0 0

6 4 6 2 0 0 3

12 6 24 0 12 6 0

4 6 2 0 8 6 2 1

0 0 12 6 12 6 0

0 0 6 2 6 4 0

L
y

y

y

F L L
M L L L L
F L LP
M L L L L L L

F L L

L L L LM

     
          
                 
      
          

Beam Stiffness

Example 1 - Beam Problem

The local nodal forces for element 1:
7

31

2 2
1

2
2 2

2

12 6 12 6

6 4 6 2 3 0

4 12 6 12 6 0

6 2 6 4 1

L
y

y

f L L P

m L L L LP
f L L L P

m L L L L PL

         
                                        

The local nodal forces for element 2:

2

2 2
2

3

2 2
3

12 6 12 6 0 1.5

6 4 6 2 1

4 12 6 12 6 0 1.5

6 2 6 4 0 0.5

y

y

f L L P

m L L L L PLP
f L L L P

m L L L L PL
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Beam Stiffness

Example 1 - Beam Problem

The free-body diagrams for the each element are shown 
below.

Combining the elements gives the forces and moments for the 
original beam.

Beam Stiffness

Example 1 - Beam Problem

Therefore, the shear force and bending moment diagrams are:
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Beam Stiffness

Example 2 - Beam Problem

Consider the beam shown below. Assume E = 30 x 106 psi and 
I = 500 in4 are constant throughout the beam. Use four 
elements of equal length to model the beam.

The beam element stiffness matrices are:

2 2
( )

3

2 2

( 1) ( 1)

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

i

v vi i i i

L L

L L L LEI

L LL

L L L L

  

 
  
   
  

k

Beam Stiffness

Example 2 - Beam Problem

Using the direct stiffness method, the four beam element 
stiffness matrices are superimposed to produce the global 
stiffness matrix. 

Element 1 Element 2

Element 3

Element 4
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Beam Stiffness

Example 2 - Beam Problem

The boundary conditions for this problem are:

1 1 3 5 5 0v v v     

Beam Stiffness

Example 2 - Beam Problem

The boundary conditions for this problem are:

After applying the boundary conditions the global beam 
equations reduce to: 

1 1 3 5 5 0v v v     

2
2 2

2
2 2 2

33

4
2 2

4

24 0 6 0 0

0 8 2 0 0

6 2 8 6 2

0 0 6 24 0

0 0 2 0 8

vL

L L
EI

L L L L L
L

vL

L L






  
  
       

      
      

10,000

0

0

10,000

0

lb

lb
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Beam Stiffness

Example 2 - Beam Problem

Substituting L = 120 in, E = 30 x 106 psi, and I = 500 in4 into 
the above equations and solving for the unknowns gives:

The global forces and moments can be determined as:

2 4 2 3 40.048 0v v in        

1 1

2 2

3 3

4 4

5 5

5 25 ꞏ

10 0

10 0

10 0

5 25 ꞏ

y

y

y

y

y

F kips M kips ft

F kips M

F kips M

F kips M

F kips M kips ft

 
  
 
  
  

Beam Stiffness

Example 2 - Beam Problem

The local nodal forces for element 1:

The local nodal forces for element 2:

1

2 2
1

3
2

2 2
2

12 6 12 6 0

6 4 6 2 0

12 6 12 6 0.048

6 2 6 4 0

y

y

f L L

m L L L LEI
f L L L

m L L L L

     
                           

2

2 2
2

3
3

2 2
3

12 6 12 6 0.048

6 4 6 2 0

12 6 12 6 0

6 2 6 4 0

y

y

f L L

m L L L LEI
f L L L

m L L L L

      
                          

5

25 ꞏ

5

25 ꞏ

kips

k ft

kips

k ft

 
     
  

5

25 ꞏ

5

25 ꞏ

kips

k ft

kips

k ft
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Beam Stiffness

Example 2 - Beam Problem

The local nodal forces for element 3:

The local nodal forces for element 4:

3

2 2
3

3
4

2 2
4

12 6 12 6 0

6 4 6 2 0

12 6 12 6 0.048

6 2 6 4 0

y

y

f L L

m L L L LEI
f L L L

m L L L L

     
                           

4

2 2
4

3
5

2 2
5

12 6 12 6 0.048

6 4 6 2 0

12 6 12 6 0

6 2 6 4 0

y

y

f L L

m L L L LEI
f L L L

m L L L L

      
                          

5

25 ꞏ

5

25 ꞏ

kips

k ft

kips

k ft

 
     
  

5

25 ꞏ

5

25 ꞏ

kips

k ft

kips

k ft

 
    
 
  

Beam Stiffness

Example 2 - Beam Problem

Note: Due to symmetry about the vertical plane at node 3, we 
could have worked just half the beam, as shown below.

Line of symmetry
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Beam Stiffness

Example 3 - Beam Problem

Consider the beam shown below. Assume E = 210 GPa and 
I = 2 x 10-4 m4 are constant throughout the beam and the 
spring constant k = 200 kN/m. Use two beam elements of 
equal length and one spring element to model the structure.

Beam Stiffness

Example 3 - Beam Problem

The beam element stiffness matrices are:

2 2
(1)

3

2 2

1 1 2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI

L LL

L L L L

 

 
  
   
  

k

3

2 2
(2)

3

2 2

2 2 3

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI

L LL

L L L L

 

 
  
   
  

k

The spring element stiffness matrix is:

3 4

(3)

v v

k k

k k

 
   

k

3 3 4

(3)

0

0 0 0

0

v v

k k

k k



 
    
  

k
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Beam Stiffness

Example 3 - Beam Problem

Using the direct stiffness method and superposition gives the 
global beam equations.

1 1
2 2

1 1

2 2
2 2 2

2 23

3 3
2 2

3 3

4 4

12 6 12 6 0 0 0

6 4 6 2 0 0 0

12 6 24 0 12 6 0

6 2 0 8 6 2 0

0 0 12 6 12 ' 6 '

0 0 6 2 6 4 0

0 0 0 0 ' 0 '

y

y

y

y

F vL L

M L L L L

F vL L
EI

M L L L L L
L

F vL k L k

M L L L L

F vk k







     
        
      
         
           

   
       

3

'
kL

k
EI







Element 1
Element 2

Element 3

Beam Stiffness

Example 3 - Beam Problem

The boundary conditions for this problem are: 1 1 2 4 0v v v   

1 1
2 2

1 1

2 2
2 2 2

2 23

3 3

2 2
3 3

4 4

12 6 12 6 0 0 0

6 4 6 2 0 0 0

12 6 24 0 12 6 0

6 2 0 8 6 2 0

0 0 12 6 12 ' 6 '

0 0 6 2 6 4 0

0 0 0 0 ' 0 '

y

y

y

y

F vL L

M L L L L

F vL L
EI

M L L L L L
L

F vL k L k

M L L L L

F vk k







     
        
      
         
           

   
       

3

'
kL

k
EI







2

3

3

0

0

0

0

v
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Beam Stiffness

Example 3 - Beam Problem

After applying the boundary conditions the global beam 
equations reduce to: 

2 2
2 2

3 33
2 2

3 3

8 6 2 0

6 12 ' 6

2 6 4 0
y

M L L L
EI

F L k L v P
L

M L L L





      
                 

            

Solving the above 
equations gives:

2

2 3 3

3

3 2

3 1

12 7 '

7 1
'

12 7 '

9 1

12 7 '

PL

EI k

PL kL
v k

EI k EI

PL

EI k





       
               

         

Beam Stiffness

Example 3 - Beam Problem

Substituting L = 3 m, E = 210 GPa, I = 2 x 10-4 m4, and 
k = 200 kN/m in the above equations gives:

Substituting the solution back into the global equations gives:

3

2

3

0.0174

0.00249

0.00747

v m

rad

rad




 
 
 

1

2 2
1

2

2 2 2
2 3

3

2 2
3

4

12 6 12 6 0 0 0 0

6 4 6 2 0 0 0 0

12 6 24 0 12 6 0 0

6 2 0 8 6 2 0 0.00249

0 0 12 6 12 ' 6 ' 0.0174

0 0 6 2 6 4 0 0.00747

0 0 0 0 ' 0 '

y

y

y

y

F L L

M L L L L

F L L
EI

M L L L L L rad
L

F L k L k m

M L L L L rad

F k k

   
      
     
        
           

    
      0
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Beam Stiffness

Example 3 - Beam Problem

Substituting L = 3 m, E = 210 GPa, I = 2 x 10-4 m4, and 
k = 200 kN/m in the above equations gives:

Substituting the solution back into the global equations gives:

3

2

3

0.0174

0.00249

0.00747

v m

rad

rad




 
 
 

1

1

2

2

3

3

4

69.9

69.7

116.4

0

50

0

3.5

y

y

y

y

F kN

M kN m

F kN

M

F kN

M

F kN

   
       
   
      
      
   
   

  

Beam Stiffness

Example 3 - Beam Problem

The variation of shear force and bending moment is: 

69.7kNm

139.5kNm

69.9kN

46.5 kN
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Beam Stiffness

Distributed Loadings

Beam members can support distributed loading as well as 
concentrated nodal loading. 

Therefore, we must be able to account for distributed loading. 

Consider the fixed-fixed beam subjected to a uniformly 
distributed loading w shown the figure below. 

The reactions, determined from structural analysis theory, are 
called fixed-end reactions.

Beam Stiffness

Distributed Loadings

In general, fixed-end reactions are those reactions at the ends 
of an element if the ends of the element are assumed to be 
fixed (displacements and rotations are zero). 

Therefore, guided by the results from structural analysis for the 
case of a uniformly distributed load, we replace the load by 
concentrated nodal forces and moments tending to have the 
same effect on the beam as the actual distributed load.
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Beam Stiffness

Distributed Loadings

The figures below illustrates the idea of equivalent nodal loads 
for a general beam. We can replace the effects of a uniform 
load by a set of nodal forces and moments.

Beam Stiffness

Work Equivalence Method

This method is based on the concept that the work done by 
the distributed load is equal to the work done by the discrete 
nodal loads. The work done by the distributed load is:

   
0

L

distributedW w x v x dx 
where v(x) is the transverse displacement. The work done by 
the discrete nodal forces is:

1 1 2 2 1 1 2 2nodes y yW m m f v f v    

The nodal forces can be determined by setting 
Wdistributed = Wnodes for arbitrary displacements and rotations.
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Beam Stiffness

Example 4 - Load Replacement

Consider the beam, shown below, and determine the 
equivalent nodal forces for the given distributed load.

Using the work equivalence method or: distributed nodesW W

    1 1 2 2 1 1 2 2

0

L

y yw x v x dx m m f v f v    

Beam Stiffness

Example 4 - Load Replacement

Evaluating the left-hand-side of the above expression with:

 w x w 

    3
1 2 1 23 2

2 1
( )v x v v x

L L
       

    2
1 2 1 2 1 12

3 1
2v v x x v

L L
           

gives:

       
2

1 2 1 2 2 1

0 2 4

L Lw L w
w v x dx v v Lw v v      

 
2 2

1 2 1 12
3 2

L w L w
wLv     
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Beam Stiffness

Example 4 - Load Replacement

Using a set of arbitrary nodal displacements, such as:

1 2 2 10 1v v     

The resulting nodal equivalent force or moment is:

2 2 2
2

1

2

4 3 2 12

wL L wL
m L w w

 
      

 

   1 1 2 2 1 1 2 2

0

L

y ym m f v f v w x v x dx     

1 2 1 20 1v v     

Beam Stiffness

Example 4 - Load Replacement

Using a set of arbitrary nodal displacements, such as:

The resulting nodal equivalent force or moment is:

2 2 2

2 4 3 12

wL wL wL
m

 
    

 

   1 1 2 2 1 1 2 2

0

L

y ym m f v f v w x v x dx     
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Beam Stiffness

Example 4 - Load Replacement

Setting the nodal rotations equal zero except for the nodal 
displacements gives:

Summarizing, the equivalent nodal forces and moments are:

1 2 2y

LW Lw
f Lw Lw     

2 2 2y

LW Lw
f Lw   

End of Chapter 4a
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