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Typical units for heat transfer

Variable SI U.S. Customary

Thermal conductivity, K kW /(m - °C) Btu/(h-fi-°F)

Temperature, T “Cor K “F or “R

Internal heat source, Q kW/m? Btu/(h-ft*)

Heat flux, ¢ kW/m? Btu/(h-ft?)

Convection coeflicient, /i kW/(m? - °C) Btu/(h-ft>-°F)

Energy, E kW - h Btu

Specific heat, ¢ (kW - h)/(kg-°C) Btu/(slug-°F)

Mass density, p kg/m? slug/ft’
Example 1:

Determine the temperature distribution along the length of the rod shown in Figure (1) with an
insulated perimeter. The temperature at the left end is a constant 100 °F and the free-stream
temperature is 10 °F. Let h = 10 Btu/(h-ft2-_F) and K, = 20 Btu/(h-ft-°F). The value of h is typical
for forced air convection h=10 Btu/(h-ft>-°F) and the value of K, is 20 Btu/(h-ft-°F) for carbon
steel (Tables 13-2 and 13-3).

AK.. 7(1 in.)?[20 Btu/(h-ft-°F)](1 ft%)

L 10 in.
) (144 5
(lzin.,’ﬂ){ in°)

= 0.5236 Btu/(h-"F)

hPL  [10 Blu,’(h—fl:—“F)](Eﬂ:) ( I in. ) ( 10 in. )
6 6 12 in./ft / \ 12 in./ft

— 0.7272 Btu/(h-°F)

B . ) I in. 10 in.
hT, PL = [10 Btu/(h-ft=-°F)](10 F}(Eﬂ)(lj in /ﬂ) (1‘? in ,"ﬁ)

= 43.63 Btu/h
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Figure 1: One-dimensional rod subjected to temperature variation
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Figure 2: Finite element discretized rod

In general, from Eqs. (13.4.22) and (13.4.27), we have

[k] —A‘E‘“’ L: _H +h% ﬁ ;] + ” hIN]"[N]dsS (13.4.34)

Sr:l il

Substituting Eqs. (13.4.33) into Eq. (13.4.34) for element 1, we have

| 1
W) = 0.5236[

| _” Btu/(h-°F) (13.4.35)

where the second and third terms on the right side of Eq. (13.4.34) are zero because

there are no convection terms associated with element 1. Similarly, for elements 2
and 3, we have

K] = k9] = kY] (13.4.36)
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However, element 4 has an additional (convection) term owing to heat loss from the
flat surface at its right end. Hence, using Eq. (13.4.28), we have

kW] = k™M + ha [g ﬂ

1 -1 ) lin. V[0 0
— 0.5236 10 Btu/(h-fi>-F
[—1 1]+[ u/(h )]”(uin./n) [0 1]

_[ 0.5236  —0.5236

~0.5236 0.?413] Btu/(h-"F) (13.4.37)

In general, we would use Egs. (13.4.23)-(13.4.25), and (13.4.29) to obtain the
element force matrices. However, in this example, Q = 0 (no heat source), ¢* = 0
(no heat flux), and there is no convection except from the right end. Therefore,

M= ={%=o0 (13.4.38)
. 0
and {fMJ}—hIIA{l}
2 in. \'[0
— 10 Btu,f(h-frﬁF)](m°F)n(121in_m) {1}
- 2.182{ ?} Btu/h (13.4.39)

The assembly of the element stiffness matrices [Eqgs. (13.4.35)-(13.4.37)] and the
element force matrices [Eqs. (13.4.38) and (13.4.39)], using the direct stiffness method,
produces the following system of equations:

T 05236 —0.5236 0 0 0 T(u) ( F )
—0.5236  1.0472 —0.5236 0 0 f> 0
0 ~0.5236  1.0472 —0.5236 0 {3 =40 3
0 0 —0.5236  1.0472 —0.5236 | | 4 0
L0 0 0 —05236 07418 L#s) | 2.182
(13.4.40)
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where F; corresponds to an unknown rate of heat flow at node 1 (analogous to an un-
known support force in the stress analysis problem). We have a known nodal temper-
ature boundary condition of #; = 100°F. This nonhomogeneous boundary condition
must be treated in the same manner as was described for the stress analysis problem
(see Section 2.5 and Appendix B.4). We modify the stiffness (conduction) matrix and
force matrix as follows:

10 0 0 0 1(n (100 )

0 1.0472 -05236 0 0 f 52.36

0 —05236 1.0472 —05236 0 {ny=¢ 0 % (13441
0 0 ~0.5236  1.0472 —0.5236 | | 1 0

0 0 0 ~05236 07418 ) |is) | 2182

where the terms in the first row and column of the stiffness matrix corresponding to
the known temperature condition, ¢; = 100°F, have been set equal to 0 except for
the main diagonal, which has been set equal to 1, and the first row of the force matrix
has been set equal to the known nodal temperature at node 1. Also, the term
(—0.5236) x (100°F) = —52.36 on the left side of the second equation of Eq. (13.4.40)
has been transposed to the right side in the second row (as +52.36) of Eq. (13.4.41).
The second through fifth equations of Eq. (13.4.41) corresponding to the rows of un-
known nodal temperatures can now be solved (typically by Gaussian elimination).
The resulting solution is given by

1> =85.93°F 13 =T1.87°F 14 = 57.81°F 15 =43.75°F (13.4.42)
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Example 2: To illustrate more fully the use of the equations developed in Section 13.4, we will
now solve the heat-transfer problem shown in Figure 13—11. For the one-dimensional rod,
determine the temperatures at 3-in. increments along the length of the rod and the rate of heat flow
through element 1. Let K=3 Btu/(h-in.-°F), h=1.0 Btu/(h-in® -F),and T,,= 0 F. The temperature at
the left end of the rod is constant at 200 °F.

2-in. radius
=h T,
200°F =h, T,

Figure 13-11 One-dimensional rod subjected to temperature variation

200°F ¢ | @12 @ 3 @.4

3in. Jin. Jin.

Figure 13-12 Finite element discretized rod of Figure 13-11

The finite element discretization is shown in Figure 3. Three elements are sufficient to enable us to
determine temperatures at the four points along the rod,although more elements would yield
answers more closely approximating the analytical solution obtained by solving the differential
equation such as Eq. (13.2.3) with the partial derivative with respect to time equal to zero. There
will be convective heat loss over the perimeter and the right end of the rod. The left end will not
have convective heat loss. Using Eqs. (13.4.22) and (13.4.28), we calculate the stiffness matrices
for the elements as follows:

AK,. (412(3) — 47 Btu/(h-°F)

L
r’wZL _( }(4;}(3) — 27 Bu/(h-"F) (13.4.43)

hA = (1)(4n) = 4z Btu/(h-°F)
Substituting the results of Egs. (13.4.43) into Eq. (13.4.22), we obtain the stiffness ma-

trix for element 1 as
s | | 2 1
or-f } JJeuf? }
S T R T

] Btu/(h-"F) (13.4.44)
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Because there is no convection across the ends of element 1 (its left end has a known
temperature and its right end is inside the whole rod and thus not exposed to fluid mo-
tion), the contribution to the stiffness matrix owing to convection from an end of the
element, such as given by Eq. (13.4.28), is zero. Similarly,

S 2 -4
) = kW] = 4:r[ 1 ﬂ Btu/(h-°F) (13.4.45)
However, element 3 has an additional (convection) term owing to heat loss from the
exposed surface at its right end. Therefore, Eq. (13.4.28) yields a contribution to the
element 3 stiffness matrix, which is then given by

- - 0 0 2 1 0 0
(37 — (1) — 2
K5 =k ]+hAL} 1] 4;:[_% 2]—{—4?:[0 1]

2

= 4n L ] Btu/(h-"F) (13.4.46)

Pk |
d pa|—

In general, we calculate the force matrices by using Eqs. (13.4.26) and (13.4.29).
Because O =0, ¢ = 0, and T, = 0°F, all force terms are equal to zero.

The assembly of the element matrices, Eqs. (13.4.44)(13.4.46), using the direct
stiffness method, produces the following system of equations:

2 —% 0 0 I F
1 1
—3 4 —= 0 I 0
E - - = 13.4.47
0 0 -1 3|lu 0

We have a known nodal temperature boundary condition of 7; = 200 °F. As in Example
13.1, we modify the conduction matrix and force matrix as follows:

I 0 0 0](n 8007
0 4 -1 o] 400n

o o4 1ta("] o (13.4.48)
0 0 -1 3] 0

where the terms in the first row and column of the conduction matrix corresponding
to the known temperature condition, 7; = 200°F, have been set equal to zero except
for the main diagonal, which has been set to equal one, and the row of the force
matrix has been set equal to the known nodal temperature at node 1. That 1s, the
first row force is (200)(4n) = 800z, as we have left the 4z term as a multiplier
of the elements inside the stiffness matrix. Also, the term (—1/2)(200)(47) = —400x
on the left side of the second equation of Eq. (13.4.47) has been transposed to the
right side in the second row (as + 400x) of Eq. (13.4.48). The second through fourth
equations of Eq. (13.4.48), corresponding to the rows of unknown nodal tempera-
tures, can now be solved. The resulting solution 1s given by

tr =25.4°F 13 =3.24°F 14 = 0.54°F (13.4.49)
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Next, we determine the heat flux for element 1 by using Eqgs. (13.4.6) in (13.4.8) as
gV = —K..[B){t} (13.4.50)
Using Eq. (13.4.7) in Eq. (13.4.50), we have

1 1 [
m_ g | Z|)H
q K_YJ I L] { Ez} (13.4.51)

Substituting the numerical values into Eq. (13.4.51), we obtain

: 1 17 ( 200
iy _ —3|l-= =
d [ 3 3} { 254 }
or gV = 174.6 Btu/(h-in?) (13.4.52)

We then determine the rate of heat flow g by multiplying Eq. (13.4.52) by the cross-
sectional area over which ¢ acts. Therefore,

g'" = 174.6(4rn) = 2194 Btu/h (13.4.53)
Here positive heat flow indicates heat flow from node 1 to node 2 (to the right). |
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Example 3:

The plane wall shown in Figure 13-13 i1s 1 m thick. The left surface of the wall
(x = 0) is maintained at a constant temperature of 200°C, and the right surface
(x = L =1 m) is insulated. The thermal conductivity is K, = 25 W/(m - °C) and
there is a uniform generation of heat inside the wall of Q = 400 W/m®. Determine
the temperature distribution through the wall thickness.

LLLLLLJAL LT LLLLLL LI IIT7,
1 2 3 4 SR
1. L L
we | O ]@] O] @R
A
I m "l
Figure 13-13 Conduction in a plane Figure 13-14 Discretized model
wall subjected to uniform heat of Figure 13-13

generation

This problem 1s assumed to be approximated as a one-dimensional heat-transfer
problem. The discretized model of the wall 1s shown in Figure 13- 14. For simplicity,
we use four equal-length elements all with unit cross-sectional area (4 = 1 m?). The
unit area represents a typical cross section of the wall. The perimeter of the wall
model 1s then insulated to obtain the correct conditions.

Using Eqgs. (13.4.22) and (13.4.28), we calculate the element stiffness matrices as

follows:
AK (1 m?)[25 W/(m - °C)] B .
L 0.25m 100 W/°C
For each identical element, we have
I -1
k| = lﬂﬂ[ i 1] wW/°C (13.4.54)

Because no convection occurs, /1 1s equal to zero; therefore, there 1s no convection con-
tribution to k.

The element force matrices are given by Eq. (13.4.26). With Q = 400 W/m”,
g =0, and & = 0, Eq. (13.4.26) becomes

{/} —%{ i} (13.4.55)
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we have

f lx
f 2x

}_

100

(400 W/m?)(1 m?)(0.25 m)

oo o o =

1

-1

0
0
0

-1
2
-1
0
0

2

0
-1
2
-1
0

0
0

-1

2

-1

0
0
0

—1
1

i

1
I

I3
Iy
15

Evaluating Eq. (13.4.55) for a typical element, such as element 1, we obtain

t-1

50
W 13.4.56
. } (13.4.56)

The force matrices for all other elements are equal to Eq. (13.4.56).

The assemblage of the element matrices, Egs. (13.4.54) and (13.4.56) and the
other force matrices similar to Eq. (13.4.56), yields

Fy +50
100

100

100

50

(13.4.57)

Substituting the known temperature 1; = 200°C into Eq. (13.4.57), dividing
both sides of Eq. (13.4.57) by 100, and transposing known terms to the right side,

200°C
201

1 (13.4.58)
1
0.5

The second through fifth equations of Eq. (13.4.58) can now be solved simultaneously
to yield

tr =203.5°C 1y =206°C ty = 207.5°C ts = 208°C (13.4.59)

Using the first of Eqs. (13.4.57) yields the rate of heat flow out the left end:
Fi =100(1; — 1) — 50
Fy = 100(200 — 203.5) — 50
Fy = —-400 W

The closed-form solution of the differential equation for conduction, Eq. (13.1.9),
with the left-end boundary condition given by Eq. (13.1.10) and the right-end boundary
condition given by Eq. (13.1.11), and with g7 = 0, is shown in Reference [2] to yield a
parabolic temperature distribution through the wall. Evaluating the expression for
the temperature function given in Reference [2] for values of x corresponding to the
node points of the finite element model, we obtain

1 =203.5°C 13y =206°C 1y = 207.5°C ts =208°C (13.4.60)
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Figure 1315 1s a plot of the closed-form solution and the finite element solution
for the temperature variation through the wall. The finite element nodal values and
the closed-form values are equal, because the consistent equivalent force matrix
has been used. (This was also discussed in Sections 3.10 and 3.11 for the axial bar sub-
jected to distributed loading, and in Section 4.5 for the beam subjected to distributed
loading.) However, recall that the finite element model predicts a linear temperature
distribution within each element as indicated by the straight lines connecting the
nodal temperature values in Figure 13- 15.

Tix),°F
Closed-form solution (from Reference [2]),
B =QxL( _ x
210 T(x) ' (1 2L)+ T(0)
205 - Finite element solution
200 | | | L = r.m

0.25 0.50 0.75 1.00

Figure 13-15 Comparison of the finite element and closed-form solutions for
Example 13.3

[2] Kreith, F., and Black, W. Z., Basic Hear Transfer, Harper & Row, New York, 1980.
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