POLARITY MARKING & CONVERSION

OF TWO - WINDING TRANSFORMER INTO AUTO TRANSFORMER

Apparatus: 1) Two winding transformer (230/115 V, 1 KVA)

- 2) Voltmeter (0-300 V) 1 No. (0-150 V) 2Nos.
- 3) Ammeter (0-5 A) 3 Nos.
- 4) Loading rheostat (5 KW)
- 5) Single phase dimmerstat (2 KVA)
- 6) Transformer (Teaser with tapping on primary & secondary)

Circuit Diagram:

Figure (a) Polarity marking on two winding transformer.

Fig (b) & (c) Conversion of two-winding transformer into auto-transformer

Theory: It should cover the following points

- 1) Explanation of dot and cross marking in general
- 2) Concept of polarity marking of two mutually coupled coils.
- 3) Importance of correct polarity in parallel operation of transformers
- 4) Auto transformer

Procedure:

(A) POLARITY MARKING

- i) Make the connections as shown in figure (a)
- ii) Connect the primary winding P1 P2 to supply.
- iii) Short circuit the terminals P2 & S2
- iv) Connect the voltmeters across primary & secondary windings of transformer & one voltmeter across P1 and S1
- v) Switch on the supply.
- vi) By varying the input voltage with the help of dimmerstat take various reading V1, V2 and V3 for various steps of input voltage.
- vii) Analyse the readings and decide about polarity marking of two windings of transformer.

 For this assume that a dot is present at terminal P1 of the primary winding.

 If V3 = (V1 + V2), the transformer has additive polarity and the other dot should be marked at S2.

 If V3 = (V1 V2), the transformer has subtractive polarity and the other dot should be marked at S1.

(B) AUTO TRANSFORMER

- i) Make the connections as shown in figure (b) & (c)
- ii) Based on the dot marking, convert the two winding transformer into auto-transformer of
 - 1. Step down type (Fig.b) 2. Step-up type (Fig. c)
- iii) Note the corresponding voltmeter readings of the two sides.

Precautions:

- 1) All the connection should be perfectly tight.
- 2) Supply should not be switched ON unstill & unless the connection are checked by the teacher.
- 3) Do not bend while taking the readings.
- 4) No loose wire should lie on the work-table.

Conclusion:

- a) The given transformer is found to have _____ polarity. If a dot is marked at P1 on primary side, the dot on secondary side should be at _____
- b) The step-up and step-down modes of auto-transformer were studied.

Viva Questions:

- 1. Explain how correct polarity is important in parallel operation of transformers
- 2. What is inrush current in transformers?
- 3. What is the effect of magnetic saturation on the excitation current of transformers?
- 4. Explain how the input volt-amperes are transformed to secondary side in autotransformer
- 5. Discuss copper saving in auto-transformer