Experiment NO. 3:5

قسم الهندسة الكهربانية

SCOTT. CONNECTIONS OF TRANSFORMER

Apparatus: Ammeters (0-5 A, AC) 3 Nos; (0-10 A, AC) 2 Nos.

Voltmeters (0-600 V; AC) 1 Nos, (0-150 V; Ac) 2 Nos. Transformer 1-phase, 1 kVA, with 86.6% tap on 415V side Transformer 1-phase, 1 kVA, with 50% tap on 415V side

Dimmer stat (0-440 V, 3 phase) 1 Nos.

Connecting wires, etc.

Circuit Diagram:

Theory: It should cover the following.

- 1. Explanation and mathematical proof of how a balanced two-phase supply can be obtained by using Scott connection.
- 2. Phasor diagram illustrating the phase quadrature between the secondary voltages of the two transformers.

Procedure:

- 1. Connect the circuit as shown.
- 2. Use 86.6% tapping for teaser transformer and 50% tapping for main transformer.
- 3. Keep both loads zero
- 4. Switch on the 3-ph. supply and take the readings.
- 5. Vary the loads as per given in observation table and take the readings.

Observation Table:

[A]FOR BALANCED LOAD

S.	Load condition	Teaser transformer			Main transformer			
No.		I _{IT}	I _{2T}	V _{IT}	I _{IM}	I _{2M}	V _{IM}	V _{2M}
1.	No load				7 71			
2.	1kW load on both transformers			045304				

[B]FOR UNBALANCED LOAD

S.	Load condition	Teaser transformer			Main transformer				
No.		I_{1T}	I_{2T}	V _{1T}	I _{IM}	I _{2.M}	$V_{\rm IM}$	V_{2M}	
1.	1kW load on								
	Teaser								
	transformer								
2.									
1	1kW load on								
	Main								
	transformer								

Calculations:

Verify the following calculated values from the measured values.

1. $I_{1T} = 1.15 \times K \times I_{2T}$

2. $I_{1M} = \sqrt{[(K \times I_{2M})^2 + (0.5 \times K \times I_{2T})^2]}$

3. If $|V_{2T}| = |V_{2M}|$ than $\sqrt{|V_{2T}|^2 + |V_{2M}|^2} = \sqrt{2} |V_{2T}| = \sqrt{2} |V_{2M}|$ Where $K = N2/N1 = V_{2M}$

Conclusion:

The 3 – Phase to two phase conversion was verified. i.e. 3 – phase system can be converted in to two phase system using Scott-connections.

Viva Questions:

1) Is it possible to obtain a 3- phase a.c. supply from 2 - phase a.c. supply by using Scott-connection?

2) Where dose the Scott-connection find its use?

- 3) If the two transformers used in Scott. Connection are identical, then how many primary turns of the teaser transformer are actually used?
- 4) What is the ratio of number of turns on the primaries of teaser transformer in case of Scott-connection?

5) Are the two transformers connected for Scott-connection coupled magnetically?

6) Do you know any other method of conversion of 3-phese a.c. supply from 2-phese a.c. supply?