

8.17 EXERCISE

The table represents the OCC of a dc machine at 850 rpm. The machine has a shunt field wdg of 600 turns and 20 Ω . The armature circuit resistance is 0.25 Ω .

NB unless otherwise stated, you may neglect the demagnetizing effect of armature reaction and the brush constant drop.

1. Separate excitation

The field wdg is connected in series with a variable resistor to a 330 v separate source.

1.1 The field control resistor (FCR) is set to 10 Ω .

Plot the external characteristic up to a load current of 300 A. find the load current and voltage regulation when the terminal voltage is 220 V. (112 A, 12.7%)

- 1.2 Repeat 1.1 (on the same sheet) for a FCR of 20. (20 A, 2.3%)
- 1.3 Find FCR to make the terminal voltage 220 V at a load current of 180 A. (2.3Ω)
- 1.4 Find the maximum possible load current at a terminal voltage of 220 V. (196 A)
- 1.5 Find the terminal voltage when the speed is changed to 1100 rpm, FCR is set to 10 Ω , and the load current is 200 A. (270.9 V)

2. Shunt

- 2.1 for a speed of 850 rpm:
 - A. What is the no load voltage when FCR is shorted out? Set to 10Ω ? Set to 30Ω ?
 - B. Find the critical resistance and short circuit current?
 - C. What is the critical speed when FCR is set to 10Ω ? 30Ω ?
 - D. What is the minimum speed at which the generator can build up? (257.5 V, 208 V, 24 V; 40 Ω , 80 A; 637.5 rpm, 1062.5 rpm; 425 rpm)
- 2.2 for a speed of 1100 rpm:
 - A. Fined the critical resistance and short circuit current?
 - B. Find the no load voltage when FCR is shorted out? (51.76 Ω , 103.5 A; 351.5 V)

$I_{f}(A)$	E (V)
0	20
0.5	24
1	40
2	80
3	119
4	150
5	174
6	193
7	209
8	222
9	233
10	241
11	248
12	253
13	258
14	262
16	268
18	272
20	275

- 2.3 At 850 rpm and FCR shorted out:
 - A. Plot the external characteristic.
 - B. Find the load current and VR when the terminal voltage is 220 V.
 - C. Find the terminal voltage, load current and VR when the load resistance is 1.5 Ω .
 - D. What is the breakdown current?
- (101A,17%; 207V, 138A, 24.4%; 291A)
 - 2.4 Estimate the value of FCR needed to make the terminal voltage 220V at a load current of 80A when the speed is 850 rpm. (1.7Ω)
 - 2.5 The speed is 350 rpm and FCR is shorted out. V_b is 2 V, and armature reaction demagnetization is <u>not</u> negligible. Find ΔE and ΔI when the terminal voltage is 220 V at a load current of 56A. (9.25V, 1.3A).
 - 3. Compound

The machine is connected in short shunt for cumulative compounding. The speed is 850 rpm.

- 3.1 With FCR shorted out, it is required to make the terminal voltage 220V when the load current is 150A. how many series turns are needed? What is the voltage regulation? Assume negligible series field resistance. (10 turns, 17%)
- 3.2 The series field winding has 15 turns and a resistance of 0.05Ω ; FCR is shorted out. V_b is 2V and the demagnetizing effect of armature reaction demagnetization is <u>not</u> negligible. when the terminal voltage is 220 V at a load current of 80A. Find the armature current, the induced emf, and ΔE . (91.2A, 259V, 10.2V)
- 3.3 The series field winding has 16 turns and a resistance of 0.05Ω ; FCR is set at some unknown value. V_b is 2V, and the demagnetizing effect of armature reaction is negligible. The load current is found to be 150 A when the shunt field current 10A. Find the terminal voltage, the value of FCR, and VR. (212.5V, 2 Ω , 17.6%)

University of Anbar College of Engineering Dept. of Electrical Engineering

Solution of chapter 8 (EXERCISE 1)				
		IA	Vt	
Q1/ Nf=600 R=2002 RA=0.25		0	248	
1) Separate excitation		30	240.5	
1-1- FCR=10 Ω , IL=300 IL=?, VR=?, At Vt=220V		60	233	
$R_{f}=FCR+R_{f} \implies R_{f}=10+20=30\Omega$		90	225.5	
$If = \frac{13N}{Rf} = \frac{333}{30} = 11A$			218	
EA= 248, Vt=EA-IARA, $IA = \frac{EA - Vt}{RA} = \frac{248 - 220}{0.25} = 112A$		150	210.5	
$V_{R} = \frac{Vmt - VAt}{Vfc} = \frac{248 - 220}{220} * 100 = 12.72\%$	~ 1	180	203	
To draw external characteristic		210	159.5	
Vt=EA-IARA		300	173	
$IA=0 \rightarrow 300 A$, $Vt=EA=248$ when $IA=0$				
Vt=248-30*0.25=240.5 when IA=30	IA	Vt		
1-2- FCR=20, Rf=40Ω If= $\frac{330}{40}$ = 8.25 <i>A</i> , so EA=225v IA= $\frac{EA-Vt}{RA}$ = $\frac{225-220}{0.25}$ = 20 <i>A</i> VR= $\frac{Vnt-Vt}{Vt}$ = $\frac{225-220}{220}$ * 100% = 2.27 ≈ 2.3% To draw external characteristic		225		
		217.	5	
		210		
		202.	5	
		195		
		187.	5	
		180		
		172.	5	
Vt=EA=225 when IA=0 240 Vt=225-30*0.25=217.5, When IA=30A 270 300 300		165		
		157.5		
		150		

University of Anbar College of Engineering Dept. of Electrical Engineering

