

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic I

Second Class

Chapter01: Semiconductor Diodes Lec01_p1 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Semiconductor Materials: Ge, Si, and GaAs

Semiconductors are a special class of elements having a conductivity between that of a good conductor and that of an insulator.

- They fall into two classes : single crystal and compound
- Single crystal : Germanium (Ge) and silicon (Si).
- Compound : gallium arsenide (GaAs), cadmium sulfide (CdS), gallium nitride (GaN), gallium arsenide phosphide (GaAsP)

The three semiconductors used most frequently in the construction of electronic devices are **Ge**, **Si**, and **GaAs**.

University of Anbar College of Engineering Dept. of Electrical Engineering														Fundumental of Electronic I Msc: Munther Naif Thiyab							
\rightarrow	Group	1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>		
Pe	<mark>eriod</mark> ↓																				
1		1 <u>H</u>		7															2 <u>He</u>		
2		3 <u>Li</u>	4 <u>Be</u>											5 <u>B</u>	6 <u>C</u>	7 <u>N</u>	8 <u>O</u>	9 <u>F</u>	10 <u>Ne</u>		
<u>3</u>		11 <u>N</u> <u>a</u>	12 <u>M</u> g	جامعة الإنبار 13 14 15 Al Si											15 <u>P</u>	16 <u>S</u>	17 <u>Cl</u>	18 <u>Ar</u>			
<u>4</u>		19 <u>K</u>	20 <u>Ca</u>	21 <u>S</u> <u>c</u>	22 <u>Ti</u>	23 ⊻	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>		
<u>5</u>		37 <u>R</u> <u>b</u>	38 <u>Sr</u>	39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 <u>Tc</u>	44 <u>Ru</u>	45 <u>Rh</u>	46 <u>Pd</u>	47 <u>Ag</u>	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>l</u>	54 <u>Xe</u>		
<u>6</u>		55 <u>Cs</u>	56 <u>Ba</u>	*	72 <u>Hf</u>	73 <u>Ta</u>	74 ₩	75 <u>Re</u>	76 <u>Os</u>	77 <u>lr</u>	78 <u>Pt</u>	79 <u>Au</u>	80 <u>Hg</u>	81 <u>TI</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 <u>Po</u>	85 <u>At</u>	86 <u>Rn</u>		
<u>7</u>	-	87 <u>Fr</u>	88 <u>Ra</u>	**	104 <u>Rf</u>	105 <u>Db</u>	106 <u>Sg</u>	107 <u>Bh</u>	108 <u>Hs</u>	109 <u>Mt</u>	110 <u>Ds</u>	111 <u>Rg</u>	112 <u>Uub</u>	113 <u>Uut</u>	114 <u>Uuq</u>	115 <u>Uup</u>	116 <u>Uuh</u>	117 <u>Uus</u>	118 <u>Uuo</u>		
																	1				
		* <u>Lanthanide</u> <u>s</u>			57 <u>La</u>	58 <u>Ce</u>	59 <u>Pr</u>	60 <u>Nd</u>	61 <u>Pm</u>	62 <u>Sm</u>	63 <u>Eu</u>	64 <u>Gd</u>	65 <u>Tb</u>	66 Dy	67 <u>Ho</u>	68 <u>Er</u>	69 <u>Tm</u>	70 <u>Yb</u>	71 <u>Lu</u>		
Actinides **			89 <u>Ac</u>	90 <u>Th</u>	91 <u>Pa</u>	92 <u>U</u>	93 <u>Np</u>	94 <u>Pu</u>	95 <u>Am</u>	96 <u>Cm</u>	97 <u>Bk</u>	98 <u>Cf</u>	99 <u>Es</u>	100 <u>Fm</u>	101 <u>Md</u>	102 <u>No</u>	103 <u>Lr</u>		2		

Fundumental of Electronic I Msc: Munther Naif Thiyab

History

- Diode, in 1939 was using Ge
- Transistor, in 1947 was using Ge
- In1954 Si was used in Transistor because Si is less temperature sensitive and abundantly available.
- High speed transistor was using GaAs in 1970 (which is 5 times faster compared to Si)
- Si, Ge and GaAs are the semiconductor of choice

Fundumental of Electronic I Msc: Munther Naif Thiyab

- Valence electrons: electrons in the outermost shell.
- Atoms with four valence electrons are called tetravalent.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Atomic Structure

• Atoms with three valence electrons are called trivalent, and those with five are called pentavalent.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Covalent Bonding

Covalent bonding of Si crystal

This bonding of atoms, strengthened by the sharing of electrons, is called **covalent bonding**

Fundumental of Electronic I Msc: Munther Naif Thiyab

Covalent Bonding

There is sharing of electrons, five electrons provided by As atom and three by the Ga atom.

Covalent bonding of GaAs crystal

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Energy Levels

(a)

The farther an electron is from the nucleus, the higher is the energy state.

Fundumental of Electronic I Msc: Munther Naif Thiyab

10

Energy Levels

An electron in the valence band of silicon must absorb more energy than one in the valence band of germanium to become a free carrier. [free carriers are free electrons due only to external causes such as applied electric fields established by voltage sources or potential difference.

Fundumental of Electronic I Msc: Munther Naif Thiyab

n-Type and p-Type materials

n-Type Material

In-Type materials are created by adding elements with five valence electrons such as antimony, arsenic, and phosphorous.

□There is a fifth electron due to the (Sb) atom that is relatively free to move in the n-Type material.

□The atoms (in this case is antimony (Sb)) are called **donor**

atoms.

Fundumental of Electronic I Msc: Munther Naif Thiyab

levels and require less energy to move to conduction band.

Fundumental of Electronic I Msc: Munther Naif Thiyab

13

n-Type and p-Type materials

p-Type Material

□p-Type materials are created by adding atoms with **three** valence electrons such as boron, gallium, and indium.

□In this case, an insufficient number of electrons to complete the covalent bonds.

The resulting vacancy is called a "hole" represented by small circle or plus sign indicating absence of a negative charge.

□The atoms (in this case boron(B)) are called **acceptor atoms**.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Majority and Minority carriers

Two currents through a diode:

Majority Carriers

- •The majority carriers in n-type materials are electrons.
- •The majority carriers in p-type materials are holes.

Minority Carriers

The minority carriers in n-type materials are holes.The minority carriers in p-type materials are electrons.

14