Lecture.3

Computer Evolution and Performance
ENIAC - background
® Electronic Numerical Integrator And Computer
® University of Pennsylvania
® Trajectory tables for weapons
® Started 1943

® Finished 1946
—Too late for war effort

® Used until 1955

ENIAC - detalls

e Decimal (not binary)

e 20 accumulators of 10 digits

e Programmed manually by switches
e 18,000 vacuum tubes

e 30 tons

e 15,000 square feet

e 140 kW power consumption

e 5,000 additions per second

von Neumann/Turing

e Stored Program concept

e Main memory storing programs and
data

e ALU operating on binary data

e Control unit interpreting instructions from
memory and executing

e Input and output equipment operated by
control unit

e Princeton Institute for Advanced Studies
(IAS) computer

e Completed 1952

Structure of von Neumann machine

Central Processing Unit (CPU)

Arithmetic-
Logic
Unit (CA)
Memory
(M)

Program
Control
Unit (CC)

i L B R SRR B

- e o e e e e o e o e ww oww oww oww wele — w o

IAS - detalls

1000 x 40 bit words, each word

representing

—One 40-bit binary number —
Two 20-bit instructions:

— 8 bits opcode

— 12 bits address

Set of registers (storage in CPU)
—Memory Buffer Register
—Memory Address Register
—Instruction Register
—Instruction Buffer Register

—Program Counter
—Accumulator
—Multiplier Quotient

John von Neumann and the IAS machine, 1952

http://web.archive.org/web/20061212200023/http:/www.columbia.edu/cu/epic/gilchrist_3.07.06.pdf

Arithmetic-logic unit (ALU)

IAS organization

AC < MQ

A 4 L J

Input-

equipment

either sends data to or receives clreutts
data from Mem. or 1/O

I

! |
, I
, I
, I
| |

Memory Buffer Register E Arithmetic-logic ! e

I I
| |
I I
| I
, I
| |

Memory Address Register
specifies which Mem. location
will be read or written next

Instructic
and data

Control signals are set by
the opcode part of the
Instruction bits.
Examples:

« Bring a new instruction
from Mem. (fetch)

« Perform an addition Conteol
(execute)

|

]

]

|

|

|

I

I .
I Main

I memory
|

: M
|

|

|

|

|

|

[

|

|

|

Addresses

Program control unit (ALU)

: i
: [
- - I I
IAS organization | AC s MQ :
3 F 3 |
I)
I 4 r] Illp“t-
| Arithmetic-logic ' output
I circuits : .
| I : equipment
: | |
: [
I MBR :
: -~ L] 1
o o etrd -
Instructic
and data
YA I
I [
! ' vy
I [
I PC [
| ' W I
I [
I [.
| L l’ ‘ 'R | I an
I I memno!
| IR MAR : Ly
I [M
I [
I 1 [
I s [
I — [
| C'ouh:ol " Control I 3
: circuils L al I
| [Senals . Addresses
I [
I [
|

Arithmetic-logic unit (ALU)

|
| :
]
IAS organization : AC s MO |
| A 'y
I
: . - — | Input-
|] o
! 7'y : equipment
: | .
|
Hint: 2 instructions l MBR |
o | 'y A
are stored in each . !
| o e e e e = o ~1- L A e e o o o o o -
memory word
Instructic
and data

Main

Hint: the next instruction Vo 144
memory

sequentially, or through a
branch (jump)

—
Control >

: Control

circuits .
. Signals
—

Addresses

| I

| I

| I

| |

| I

| |

o | |

can be found either . IR MAR | M

| I

| |

| |

| |

| I

| |

| I

| [

| |

| |

|

Program control unit (ALU)

IAS — The FETCH-EXECUTE Cycle

two step— manner:FETCH load the binary
code of the instr. from Memory (or IBR)

—OQOpcode goes into IR
—Address goes into MAR

o EXECUTE — send appropriate control
signals to do what the instr. needs to do

Program control unit (ALU)

; .
I
I
I
I
| AC < MQ :
I F Y F Y
I
IAS FETCH- | ' ' | Input-
| Arithmetic-logic : output
: euit
! ren’s equipmen
EXECUTE cycle | - | ipment
l l
I
I
I
I
I MBR !
I 'y y y : F Y
I
e o I I N R .
Instructic
and data
T I
I I
| Y ! ¥
I
: IBR PC :
I ' W I
I I
I I .
I v Jv l- LR | | Ma“l
[I meno
| IR MAR , iy ry
I I
I I
I 1 I
I — I
I — I
I C.onh.-ul * Control I Y
| circuils . al I
| [Senals . Addresses
I I
I I
|

IAS — Instruction set (architecture)

Symbolic
Instruction Type Opcode Representation Description
00001010 LOAD MQ Transfer contents of register MQ to the
. | accumulator AC
00001001 LOAD MQ.M(X) Transfer contents of memoryv location X to
MQ
00100001 = STOR M) ' Transfer contents of accumulator to memory
Data transfer ‘ | location X
00000001 | LOAD M(X) . Transfer M(X) to the accumulator
00000010 LOAD —-MX) Transfer —M(X) to the accumulator
00000011 | LOAD |MX)| ' Transfer absolute value of M(X) to the
accumulator
00000100 | LOAD —|M(X)| ' Transfer —|M(X)| to the accumulator
Uscoidiannal 00001101 | JUMP M(X.0:19) - Take next instruction from left half of M(X)
branch 00001110 JUMP M(X.20:39) Take next instruction from right half of
M)
00001111 JUMP+ M(X.0:19) If number in the accumulator is nonnegative,
- take next instruction from left half of M(X)
Condiitnat branch 00010000 | JUMP+ M(X;20:39) " If number in the accumulator is nonnegative,

|

take next instruction from right half of M(X)

There was no assembly language back then!

IAS — Instruction Set (continued)

00000101 | ADD M(X)
00000111 | ADD [M(X)

- Add M(X) to AC; put the result in AC
- Add [M(X)| to AC; put the result in AC

00000110 = SUB M(X) Subtract M(X) from AC: put the result in AC |
00001000 | SUB [M(X) ' Subtract [M(X)| from AC; put the remainder
in AC
00001011 = MUL M(X) - Multiply M(X) by MQ: put most significant
T e !oits of result in AC, put least significant bits
in MQ
00001100 DIV MX) ' Divide AC by M(X): put the quotient in MQ
and the remainder in AC
00010100 | LSH Multiply accumulator by 2: i.e.. shift left one
bit position
00010101 RSH ' Divide accumulator by 2: i ., shift right one
position
00010010 | STOR M(X.8:19) | Replace left address field at M(X) by 12
Addressmodify rightmost bits of AC

00010011 STOR M(X.28:39) | Replace right address field at M(X) by 12 I
rightmost bits of AC

