
Lecture

 1

Lecture.4

Instruction Set Architecture
Processor design involves the instruction set design and the organization

of the processor. It describes the processor in terms of what the assembly

language programmer sees, i.e. the instructions and registers.

Organization is concerned with the internal design of the processor, the

design of the bus system and its interfaces, the design of memory and so

on. Two machines may have the same ISA, but different organizations.

The organization is implemented in hardware and in turn, two machines

with the same organization may have different hardware implementations,

for example, a faster form of silicon technology may be used in the

fabrication of the processor.

Introduction

The first point that must be made about computer architecture is that there

is no standard computer architecture, in the same way as there is no such

thing as a standard house architecture or standard motor car design

However, just as all cars have some basic features in common, so too do

computers. In this section, we take a high level look at the components of

computer architecture that are common to all computers, noting that any

particular computer will differ in various details from the general model

presented.

As we have seen earlier, computer programs are translated to machine

code for execution by the CPU. Once a program has been loaded into the

computer’s memory (carried out by the operating system on our behalf),

the program may then be executed.

Lecture

 2

This means that the CPU obeys the instructions making up the program

and carries them out one at a time.

It is worth noting, at this point, the primitive nature of the CPU. The CPU does not

understand programs, rather it obeys individual instructions.

Instruction Set
One of the crucial features of any processor is its instruction set, i.e. the set of

machine code instructions that the processor can carry out. Each processor has its

own unique instruction set specifically designed to make best use of the capabilities

of that processor. The actual number of instructions provided ranges from a few

dozen for a simple 8-bit microprocessor to several hundred for a 32-bit VAX

processor. However, it should be pointed out that a large instruction set does not

necessarily imply a more powerful processor.

Many modern processor designs are so called RISC (Reduced Instruction Set

Computer) designs which use relatively small instruction sets, in contrast to so called

CISC (Complex Instruction Set Computer) designs such as the VAX and machines

based on the Intel 8086 and Motorola 68000 microprocessor families.

Classification of Instructions

The actual instructions provided by any processor can be broadly classified into the

following groups:

• Data movement instructions: These allow the processor move data between

registers and between memory and registers (e.g. 8086 mov, push, pop

instructions). A ‘move’ instruction and its variants is among the most frequently

used instructions in an instruction set.

• Transfer of control instructions: These are concerned with branching for

loops and conditional control structures as well as for handling subprograms (e.g.

8086 je , jg , jmp, call, ret instructions). These are also commonly used

instructions.

• Arithmetic/logical instructions: These carry out the usual arithmetic and

logical operations (e.g. 8086 cmp, add, sub, inc, and, or, xor instructions).

Surprisingly, these are not frequently used instructions, and when used, it is often in

Lecture

 3

conjunction with a conditional jump instruction rather than for general arithmetic

purposes. Note that we have included the cmp instruction with the arithmetic/logical

instructions because it actually behaves like a sub instruction except it does not

modify its destination register.

• Input/output instructions: These are used for carrying out I/O (e.g. 8086 in,

out instructions) but a very common form of I/O called memory mapped I/O uses

‘move’ instructions for I/O.

• Miscellaneous instructions (e.g. 8086 int, sti, cti, hlt, nop) for

handling interrupts and such activities. The hlt instruction halts the processor and

the nop 1 instruction does nothing at all! These instructions are again not that

frequently used relative to data movement and transfer of control instructions. The

int instruction could also be classified as a transfer of control instruction and

interrupts are described in more detail below.

This is not the only way to classify instructions. For example, the arithmetic/logical

instructions mentioned above may be classified as operate instructions. Operate

instructions also include instructions that move data between registers and

manipulate stacks. Memory-access instructions refer to those that transfer data

between registers and memory.

Fixed and Variable Length Instructions
Instructions are translated to machine code. In some architectures all

machine code instructions are the same length i.e. fixed length. In other

architectures, different instructions may be translated into variable

lengths in machine code.

This is the situation with 8086 instructions which range from one byte to

a maximum of 6 bytes in length. Such instructions are called variable

length instructions and are commonly used on CISC machines.

1
 Most processors provide a non-operation (nop) instruction. Its execution takes one clock cycle, the purpose of

which is simply to use time. It is used (frequently in a loop) to delay some time while the processor waits for an

event to happen such as an I/O device to respond to an I/O request.

Lecture

 4

The advantage of using such instructions, is that each instruction can use

exactly the amount of space it requires, so that variable length instructions

reduce the amount of memory space required for a program.

On the other hand, it is possible to have fixed length instructions, whereas

the name suggests, each instruction has the same length. Fixed length

instructions are commonly used with RISC processors such as the

PowerPC and Alpha processors.

Since each instruction occupies the same amount of space, every

instruction must be long enough to specify a memory operand, even if the

instruction does not use one. Hence, memory space is wasted by this form

of instruction. The advantage of fixed length instructions, it is argued, is

that they make the job of fetching and decoding instructions easier and

more efficient, which means that they can be executed in less time than

the corresponding variable length instructions.

Thus the comparison between fixed and variable length instructions

comes down to the classic computing trade off of memory usage versus

execution time.

In general, computer programs that execute very quickly tend to use larger

amounts of storage, while programs to carry out the same tasks, that do

not use so much storage, tend to take longer to execute.

Fetch-Execute Cycle
This is the fundamental operation of the processor. The CPU executes the

instructions that it finds in the computers memory. In order to execute an

instruction, the CPU must first fetch (transfer) the instruction from

memory into one of its registers.

This is a non-trivial task requiring several steps and is described later.

Lecture

 5

The CPU then decodes the instruction, i.e. it decides which instruction

has been fetched and finally it executes (carries out) the instruction.

The CPU then repeats this procedure, i.e. it fetches an instruction, decodes

and executes it. This process is repeated continuously and is known as

the fetch-execute cycle.

This cycle begins when the processor is switched on and continues until

the CPU is halted (via a halt instruction, e.g. 8086 hlt instruction or the

machine is switched off).

Instead of looking at the details of a particular microprocessor's

architecture at this point, we will use a simple hypothetical

microprocessor to explain the basic concepts of computer architecture.

We call the machine SAM (Simple Architecture Machine). Figure 1

illustrates the major components of SAM. It is a 16-bit microprocessor

with 4 general purpose registers r0 to r3, a program counter register PC,

a stack pointer register SP and status register SR. The status register is

made up of similar flags to the 8086 flags register, e.g. a zero flag, an

overflow flag, a carry flag and so on.

The fetch-execute cycle operates by first fetching an instruction. The

program counter register PC always contains the address of the next

instruction to be executed.

Let us assume that a particular program has been loaded into memory and

is currently being executed. Program execution has reached a certain point

(the move instruction is being executed) and the three instructions of the

program are listed in Example 1.

To illustrate how the fetch execute cycle operates, we will trace the

execution of these instructions.

Lecture

 6

We assume that these instructions are stored in memory beginning at

location 3000H.

The instructions and their machine code equivalents (in hexadecimal) are

listed below.

We use hexadecimal instead of binary as it is easier to work with but you

must remember that it is the binary form of the instructions that are

actually stored in memory.

Fig. 1: SAM state after fetching move r0,6 (0180H in machine code)

Example 1: The following is a SAL program fragment and its machine

code version. It also shows the addresses of where the instructions are

stored in memory.

The memory variable x is stored at location 0100H in memory which

contains the value 6.

R0
R1
R2
R3

PC
SR
SP

MAR

MDR

Address Bus

Data Bus

CU

Control Bus

IR

ALU

Decoder

0180
3004

?

0
1
0

0
3000

0

0180

3000

300 A

3004
3008

Address Memory

300 C

move r0,6

load r1,x

cmp r0,r1

je Next

Lecture

 7

The label Next is 16 (10H) bytes forward from the je instruction.

SAL Code SAM Code Memory Address

 Hex Decimal

move r0, 6 0180H 3000H 4096

 0006H 3002H 4098

load r1, x 0284H 3004H 4100

 0100H 3006H 4102

cmp r0, r1 0F01H 3008H 4104

je Next 2F10H 300AH 4106
.....

.....
 300CH 4108

This code fragment assigns register r0 the value 6, assigns register r1

the value of x (also 6) and compares the values of registers r0 and r1.

If the registers are equal, which they are in this case, control transfers to

the instruction stored at Next not shown in this example.

The fetch-execute cycle operates by first fetching an instruction. The

program counter register PC always contains the address of the next

instruction to be executed.

For the code fragment under consideration, the move instruction is

currently being executed. Thus, the program counter contains the value

3004H at the point where we begin tracing execution of the program i.e.

the address of the next instruction, in this case the load instruction.

Having executed the move instruction, the load instruction is fetched.,

After fetching the load instruction, the control unit updates the program

counter to point to the next instruction to be fetched. The control unit

increments the program counter by the size of the current instruction, in

this case the PC register is incremented by 4, giving it the value 3008H.

Lecture

 8

The program counter now points to the cmp instruction.

The MDR register (see later) contains the instruction just fetched from

memory and this is transferred to the instruction register, IR.

The instruction register is another of the CPU's hidden registers which

we have not encountered to date. It is logically part of the control unit

and its function is to store an instruction so that it can be decoded for

execution.

The load instruction is now executed and the fetch-execute cycle begins

again.

Figure.1, illustrates the state of the SAM registers after the move

instruction has been fetched. Only the relevant portions of memory are

shown.

We assume that the general purpose registers have the value 0 except for

r2 which has the value 1. The SP register is shown to have "?" as its value

to indicate that we are not interested in its contents, in this example. The

status register, SR, has value 0, indicating that the flags are all set to 0.

Note: We show memory to contain text for illustrative purposes. memory

will always contain binary and in this example, it will contain the

machine code of the given instructions.

Accessing Memory
In order to execute programs, a microprocessor fetches instructions from

memory and executes them, fetching data from memory if it is required.

Lecture

 9

In Figure 1 we introduced two registers that we have not mentioned before

namely the memory address register, MAR and the memory data

register, MDR. There are a number of such CPU registers that do not

appear in the programming model of a CPU. We shall refer to these

registers as hidden CPU registers to distinguish them from the

programming model registers R0 to R4, PC, SR and SP registers.

The MAR and MDR registers are used to communicate with memory (and

other devices attached to the system bus).

In addition, Figure 1 shows the buses that allow the devices making up a

SAM computer system communicate with each other.

The MAR register is used to store the address of the location in memory

that is to be accessed for reading or writing.

When we retrieve information from memory we refer to the process as

reading from memory.

When we store an item in memory, we refer to the process as writing to

memory.

In either case, before we can access memory, we must specify the location

we wish to access, i.e. the address of the location in memory. This address

must be stored in the MAR register.

The MAR register is connected to memory via the address bus whose

function is to transfer the address in the MAR register to memory. In this

way the memory unit is informed as to which location is to be accessed.

The address bus is a uni-directional bus, i.e. information can only travel

along it in a single direction, from the CPU to memory and other devices.

Lecture

 10

The MAR register is a 16-bit register like all the other SAM registers. This

means that the maximum address it can contain is 216 - 1 (65,535) bytes,

i.e. it can address up to 64Kb of memory.

The MDR register is used either to store information that is to be written to

memory or to store information that has been read from memory. The MDR

register is connected to memory via the data bus whose function is to

transfer information, to or from memory and other devices.

The data bus is a bi-directional bus, i.e. information can travel along it,

both, to and from the CPU.

The control bus plays a crucial role in I/O. It carries control signals

specifying what operation is to be carried out and to synchronise the

transfer of information.

For example, one line of the control bus is the read/write (R/W) line

which used to specify whether a read or write operation is to be carried

out.

Another line is the valid memory address (VMA) line which indicates

that the address bus now carries a valid memory address. This tells the

memory unit when to look at the address bus to find the address of the

location to be accessed. A third line is the memory operation complete

(MOC) line which signals that the read/write operation has now

completed. We should note at this point, that the other devices attached to

the computer, such as I/O and storage devices, usually communicate with

the CPU in a similar fashion to that described for communicating with

memory

Reading from Memory
The following steps are carried out by the SAM microprocessor to read an

item from memory. The item may be an instruction or a data operand.

1. The address of the item in memory is stored in the MAR register.

Lecture

 11

2. This address is transferred to the address bus.

3. The VMA line and R/W line of the control bus are used to indicate

to memory that there is a valid address on the address bus and that a

read operation is to be carried out.

4. Memory responds by placing the contents of the desired address on

the data bus.

5. Memory enables the MOC line to indicate that the memory

operation is complete, i.e. the data bus contains the required data.

6. The information on the data bus is transferred to the MDR register. 7.

The information is transferred from the MDR register to the specified

CPU register.

Writing to Memory
This procedure is similar to that for reading from memory:

1. The address of the item in memory is stored in the MAR register.

2. This address is transferred to the address bus.

3. The item to be written to memory is transferred to the MDR register.

4. This information is transferred to the data bus.

5. The VMA line and R/W line of the control bus are used to indicate

to memory that there is a valid address on the address bus and that a

write operation is to be carried out.

6. Memory responds by placing the contents of the data bus in the

desired memory location.

7. Memory uses the MOC line to indicate that the memory operation

is complete, i.e. the data has been written to memory.

We can see from the above descriptions (which have been simplified!)

that accessing memory or any device is quite complicated from an

implementation viewpoint. So, when an instruction such as:

Lecture

 12

load r1, i

to load a register with the contents of a memory variable is to be executed,

a lot of work has to be carried out.

Firstly the instruction must be fetched from RAM, then the value of i

must be fetched from RAM and finally the transfer of the value of i to

register r1 is carried out.

It is important to realise that every operation concerning memory involves

either reading or writing memory.

Memory is a passive device. It can only store information. No

processing can be carried out on information in memory. The

information, stored in memory, must be transferred to a CPU register

for processing and the result written back to memory.

So, for example, when an instruction such as the 8086 inc instruction

is carried out to increment a memory variable (as in inc memvar),

its execution involves both a memory read operation and a memory

write operation.

Firstly, the value of memvar must be transferred to the CPU where it

can be incremented by the ALU. This transfer is carried out via a

memory read operation. Then, once this value has been incremented by

the ALU, the new value of memvar must be written out to memvar's

address in memory, via a memory write operation.

Encoding Instructions in Machine Code
Instructions are represented in machine code as binary numbers in same

way as all other information is represented in a computer system. We

noted earlier that assembly language instructions for most processors are

broadly similar and have the form:

Lecture

 13

[label]operation [operand ..] [;comment]

The general form of a machine code instruction is illustrated in Figure 2

with the bits making up the instruction being grouped into opcode and

operand fields.

Machine Code Instruction

opcode field operand field

Figure 2: Machine code instruction format

The opcode field contains a binary code that specifies the operation to be

carried out (e.g. add, jmp). Each operation has its own unique opcode.

The operand field specifies the operand or operands that the operation is

to be carried out on..

It should be emphasised that the instruction encoding for SAM is designed

for illustration purposes. The aim is to keep it as simple as possible while

remaining basically similar to the encoding of instructions on real

processors. The reader is encouraged to look at ways the instructions

could be more efficiently encoded.

Lecture

 14

Table 1 lists the opcodes of the commonly used SAM instructions in

binary and hexadecimal.

Table 1: SAM opcodes

Instruction Binary Code Hex Code

move 0000 0001 01

load 0000 0010 02

store 0000 0011 03

add 0000 1000 08

sub 0000 1001 09

cmp 0000 1111 0F

jmp 0001 1111 1F

je 0010 1111 2F

The operand field of an instruction must be able to specify the registers,

memory addresses or constants that the instruction is to operate on. SAM

instructions have at most two operands. If there are two operands then one

is always a register.

If a memory address is specified (e.g. in the case of a memory variable or

label) then the instruction is encoded using 32-bits.

Since SAM has four general purpose registers we can represent them

using 2-bit codes as follows:

00 for r0

01 for r1

10 for r2

11 for r3.

Lecture

 15

Thus, 4 bits are required to represent the two registers that may be used in

an instruction. Bit numbers 0 and 1, represent the source register and bit

numbers 2 and 3 represent the destination register.

Example: Encoding of load r1, X where X refers to a memory

variable stored at location 00FFH (255D) in memory,

Instruction and binary encoding Hex encoding (1)
 load r1, X ; r1 = X

 0000 0010 1000 01 00 0000 0000 1111 1111 0284 00ffH
 (address of val)

B-field>  W-field 

Explanation
This instruction is encoded using 32-bits. The opcode for load is 0000

0010 (02H), the destination register r1 is encoded as 01, while the

source register is encoded as 00, but is not used because the load

instruction looks for its source operand in memory, hence bit 7 of the

Bfield is set to 1, indicating a memory operand. Finally, the address of the

memory variable X (00ffH) is stored in the W-field.

