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Lecture.4 

Instruction Set Architecture 
Processor design involves the instruction set design and the organization 

of the processor. It describes the processor in terms of what the assembly 

language programmer sees, i.e. the instructions and registers. 

Organization is concerned with the internal design of the processor, the 

design of the bus system and its interfaces, the design of memory and so 

on. Two machines may have the same ISA, but different organizations. 

The organization is implemented in hardware and in turn, two machines 

with the same organization may have different hardware implementations, 

for example, a faster form of silicon technology may be used in the 

fabrication of the processor. 

Introduction 

The first point that must be made about computer architecture is that there 

is no standard computer architecture, in the same way as there is no such 

thing as a standard house architecture or standard motor car design 

However, just as all cars have some basic features in common, so too do 

computers. In this section, we take a high level look at the components of 

computer architecture that are common to all computers, noting that any 

particular computer will differ in various details from the general model 

presented. 

As we have seen earlier, computer programs are translated to machine 

code for execution by the CPU. Once a program has been loaded into the 

computer’s memory (carried out by the operating system on our behalf), 

the program may then be executed. 
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This means that the CPU obeys the instructions making up the program 

and carries them out one at a time. 

It is worth noting, at this point, the primitive nature of the CPU. The CPU does not 

understand programs, rather it obeys individual instructions. 

Instruction Set 
One of the crucial features of any processor is its instruction set, i.e. the set of 

machine code instructions that the processor can carry out. Each processor has its 

own unique instruction set specifically designed to make best use of the capabilities 

of that processor. The actual number of instructions provided ranges from a few 

dozen for a simple 8-bit microprocessor to several hundred for a 32-bit VAX 

processor. However, it should be pointed out that a large instruction set does not 

necessarily imply a more powerful processor. 

Many modern processor designs are so called RISC (Reduced Instruction Set 

Computer) designs which use relatively small instruction sets, in contrast to so called 

CISC (Complex Instruction Set Computer) designs such as the VAX and machines 

based on the Intel 8086 and Motorola 68000 microprocessor families. 

Classification of Instructions 

The actual instructions provided by any processor can be broadly classified into the 

following groups: 

• Data movement instructions: These allow the processor move data between 

registers and between memory and registers (e.g. 8086 mov, push, pop 

instructions). A ‘move’ instruction and its variants is among the most frequently 

used instructions in an instruction set. 

• Transfer of control instructions: These are concerned with branching for 

loops and conditional control structures as well as for handling subprograms (e.g. 

8086 je , jg , jmp, call, ret instructions). These are also commonly used 

instructions. 

• Arithmetic/logical instructions: These carry out the usual arithmetic and 

logical operations (e.g. 8086 cmp, add, sub, inc, and, or, xor instructions). 

Surprisingly, these are not frequently used instructions, and when used, it is often in 
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conjunction with a conditional jump instruction rather than for general arithmetic 

purposes. Note that we have included the cmp instruction with the arithmetic/logical 

instructions because it actually behaves like a sub instruction except it does not 

modify its destination register. 

• Input/output instructions: These are used for carrying out I/O (e.g. 8086 in, 

out instructions) but a very common form of I/O called memory mapped I/O uses 

‘move’ instructions for I/O. 

• Miscellaneous instructions (e.g. 8086 int, sti, cti, hlt, nop) for 

handling interrupts and such activities. The hlt instruction halts the processor and 

the nop 1  instruction does nothing at all! These instructions are again not that 

frequently used relative to data movement and transfer of control instructions. The 

int instruction could also be classified as a transfer of control instruction and 

interrupts are described in more detail below. 

This is not the only way to classify instructions. For example, the arithmetic/logical 

instructions mentioned above may be classified as operate instructions. Operate 

instructions also include instructions that move data between registers and 

manipulate stacks. Memory-access instructions refer to those that transfer data 

between registers and memory. 

Fixed and Variable Length Instructions 
Instructions are translated to machine code. In some architectures all 

machine code instructions are the same length i.e. fixed length. In other 

architectures, different instructions may be translated into variable 

lengths in machine code. 

This is the situation with 8086 instructions which range from one byte to 

a maximum of 6 bytes in length. Such instructions are called variable 

length instructions and are commonly used on CISC machines. 

                                      
1
 Most processors provide a non-operation (nop) instruction. Its execution takes one clock cycle, the purpose of 

which is simply to use time. It is used (frequently in a loop) to delay some time while the processor waits for an 

event to happen such as an I/O device to respond to an I/O request. 
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The advantage of using such instructions, is that each instruction can use 

exactly the amount of space it requires, so that variable length instructions 

reduce the amount of memory space required for a program. 

On the other hand, it is possible to have fixed length instructions, whereas 

the name suggests, each instruction has the same length. Fixed length 

instructions are commonly used with RISC processors such as the 

PowerPC and Alpha processors. 

Since each instruction occupies the same amount of space, every 

instruction must be long enough to specify a memory operand, even if the 

instruction does not use one. Hence, memory space is wasted by this form 

of instruction. The advantage of fixed length instructions, it is argued, is 

that they make the job of fetching and decoding instructions easier and 

more efficient, which means that they can be executed in less time than 

the corresponding variable length instructions. 

Thus the comparison between fixed and variable length instructions 

comes down to the classic computing trade off of memory usage versus 

execution time. 

In general, computer programs that execute very quickly tend to use larger 

amounts of storage, while programs to carry out the same tasks, that do 

not use so much storage, tend to take longer to execute. 

Fetch-Execute Cycle 
This is the fundamental operation of the processor. The CPU executes the 

instructions that it finds in the computers memory. In order to execute an 

instruction, the CPU must first fetch (transfer) the instruction from 

memory into one of its registers. 

This is a non-trivial task requiring several steps and is described later. 
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The CPU then decodes the instruction, i.e. it decides which instruction 

has been fetched and finally it executes (carries out) the instruction. 

The CPU then repeats this procedure, i.e. it fetches an instruction, decodes 

and executes it.  This process is repeated continuously and is known as 

the fetch-execute cycle. 

This cycle begins when the processor is switched on and continues until 

the CPU is halted (via a halt instruction, e.g. 8086 hlt instruction or the 

machine is switched off). 

Instead of looking at the details of a particular microprocessor's 

architecture at this point, we will use a simple hypothetical 

microprocessor to explain the basic concepts of computer architecture. 

We call the machine SAM (Simple Architecture Machine). Figure 1 

illustrates the major components of SAM. It is a 16-bit microprocessor 

with 4 general purpose registers r0 to r3, a program counter register PC, 

a stack pointer register SP and status register SR. The status register is 

made up of similar flags to the 8086 flags register, e.g. a zero flag, an 

overflow flag, a carry flag and so on. 

The fetch-execute cycle operates by first fetching an instruction. The 

program counter register PC always contains the address of the next 

instruction to be executed. 

Let us assume that a particular program has been loaded into memory and 

is currently being executed. Program execution has reached a certain point 

(the move instruction is being executed) and the three instructions of the 

program are listed in Example 1. 

To illustrate how the fetch execute cycle operates, we will trace the 

execution of these instructions. 
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We assume that these instructions are stored in memory beginning at 

location 3000H. 

The instructions and their machine code equivalents (in hexadecimal) are 

listed below. 

We use hexadecimal instead of binary as it is easier to work with but you 

must remember that it is the binary form of the instructions that are 

actually stored in memory. 

 

Fig. 1: SAM state after fetching move r0,6  ( 0180H in machine code) 

Example 1: The following is a SAL program fragment and its machine 

code version. It also shows the addresses of where the instructions are 

stored in memory. 

The memory variable x is stored at location 0100H in memory which 

contains the value 6. 

R0 
R1 
R2 
R3 

PC 
SR 
SP 

MAR 

MDR 

Address Bus 

Data Bus 

CU 

Control Bus 

IR 

ALU 

Decoder 

0180 
3004 

? 

0 
1 
0 

0 
3000 

0 

0180 

3000 

300 A 

3004 
3008 

Address Memory 

300 C 

move r0,6 

load r1,x 

cmp r0,r1 

je Next 
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The label Next is 16 (10H) bytes forward from the je instruction. 

SAL Code SAM Code  Memory Address 

   Hex Decimal 

move r0, 6 0180H 3000H 4096 

  0006H 3002H 4098 

load r1, x 0284H 3004H 4100 

  0100H 3006H 4102 

cmp r0, r1 0F01H 3008H 4104 

je Next 2F10H 300AH 4106 
..... 

..... 
 300CH 4108 

This code fragment assigns register r0 the value 6, assigns register r1 

the value of x (also 6) and compares the values of registers r0 and r1. 

If the registers are equal, which they are in this case, control transfers to 

the instruction stored at Next not shown in this example. 

The fetch-execute cycle operates by first fetching an instruction. The 

program counter register PC always contains the address of the next 

instruction to be executed. 

For the code fragment under consideration, the move instruction is 

currently being executed. Thus, the program counter contains the value 

3004H at the point where we begin tracing execution of the program i.e. 

the address of the next instruction, in this case the load instruction. 

Having executed the move instruction, the load instruction is fetched., 

After fetching the load instruction, the control unit updates the program 

counter to point to the next instruction to be fetched. The control unit 

increments the program counter by the size of the current instruction, in 

this case the PC register is incremented by 4, giving it the value 3008H. 
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The program counter now points to the cmp instruction. 

The MDR register (see later) contains the instruction just fetched from 

memory and this is transferred to the instruction register, IR. 

The instruction register is another of the CPU's hidden registers which 

we have not encountered to date. It is logically part of the control unit 

and its function is to store an instruction so that it can be decoded for 

execution. 

The load instruction is now executed and the fetch-execute cycle begins 

again. 

Figure.1, illustrates the state of the SAM registers after the move 

instruction has been fetched. Only the relevant portions of memory are 

shown. 

We assume that the general purpose registers have the value 0 except for 

r2 which has the value 1. The SP register is shown to have "?" as its value 

to indicate that we are not interested in its contents, in this example. The 

status register, SR, has value 0, indicating that the flags are all set to 0. 

Note: We show memory to contain text for illustrative purposes. memory 

will always contain binary and in this example, it will contain the 

machine code of the given instructions. 

Accessing Memory 
In order to execute programs, a microprocessor fetches instructions from 

memory and executes them, fetching data from memory if it is required. 
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In Figure 1 we introduced two registers that we have not mentioned before 

namely the memory address register, MAR and the memory data 

register, MDR. There are a number of such CPU registers that do not 

appear in the programming model of a CPU. We shall refer to these 

registers as hidden CPU registers to distinguish them from the 

programming model registers R0 to R4, PC, SR and SP registers. 

The MAR and MDR registers are used to communicate with memory (and 

other devices attached to the system bus). 

In addition, Figure 1 shows the buses that allow the devices making up a 

SAM computer system communicate with each other. 

The MAR register is used to store the address of the location in memory 

that is to be accessed for reading or writing. 

When we retrieve information from memory we refer to the process as 

reading from memory. 

When we store an item in memory, we refer to the process as writing to 

memory. 

In either case, before we can access memory, we must specify the location 

we wish to access, i.e. the address of the location in memory. This address 

must be stored in the MAR register. 

The MAR register is connected to memory via the address bus whose 

function is to transfer the address in the MAR register to memory. In this 

way the memory unit is informed as to which location is to be accessed. 

The address bus is a uni-directional bus, i.e. information can only travel 

along it in a single direction, from the CPU to memory and other devices. 
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The MAR register is a 16-bit register like all the other SAM registers. This 

means that the maximum address it can contain is 216 - 1 (65,535) bytes, 

i.e. it can address up to 64Kb of memory. 

The MDR register is used either to store information that is to be written to 

memory or to store information that has been read from memory. The MDR 

register is connected to memory via the data bus whose function is to 

transfer information, to or from memory and other devices. 

The data bus is a bi-directional bus, i.e. information can travel along it, 

both, to and from the CPU. 

The control bus plays a crucial role in I/O. It carries control signals 

specifying what operation is to be carried out and to synchronise the 

transfer of information. 

For example, one line of the control bus is the read/write (R/W) line 

which used to specify whether a read or write operation is to be carried 

out. 

Another line is the valid memory address (VMA) line which indicates 

that the address bus now carries a valid memory address. This tells the 

memory unit when to look at the address bus to find the address of the 

location to be accessed. A third line is the memory operation complete 

(MOC) line which signals that the read/write operation has now 

completed. We should note at this point, that the other devices attached to 

the computer, such as I/O and storage devices, usually communicate with 

the CPU in a similar fashion to that described for communicating with 

memory 

Reading from Memory 
The following steps are carried out by the SAM microprocessor to read an 

item from memory. The item may be an instruction or a data operand. 

1. The address of the item in memory is stored in the MAR register. 
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2. This address is transferred to the address bus. 

3. The VMA line and R/W line of the control bus are used to indicate 

to memory that there is a valid address on the address bus and that a 

read operation is to be carried out. 

4. Memory responds by placing the contents of the desired address on 

the data bus. 

5. Memory enables the MOC line to indicate that the memory 

operation is complete, i.e. the data bus contains the required data. 

6. The information on the data bus is transferred to the MDR register. 7. 

The information is transferred from the MDR register to the specified 

CPU register. 

Writing to Memory 
This procedure is similar to that for reading from memory: 

1. The address of the item in memory is stored in the MAR register. 

2. This address is transferred to the address bus. 

3. The item to be written to memory is transferred to the MDR register. 

4. This information is transferred to the data bus. 

5. The VMA line and R/W line of the control bus are used to indicate 

to memory that there is a valid address on the address bus and that a 

write operation is to be carried out. 

6. Memory responds by placing the contents of the data bus in the 

desired memory location. 

7. Memory uses the MOC line to indicate that the memory operation 

is complete, i.e. the data has been written to memory. 

We can see from the above descriptions (which have been simplified!) 

that accessing memory or any device is quite complicated from an 

implementation viewpoint. So, when an instruction such as: 
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load r1, i 

to load a register with the contents of a memory variable is to be executed, 

a lot of work has to be carried out. 

Firstly the instruction must be fetched from RAM, then the value of i 

must be fetched from RAM and finally the transfer of the value of i to 

register r1 is carried out. 

It is important to realise that every operation concerning memory involves 

either reading or writing memory. 

Memory is a passive device. It can only store information. No 

processing can be carried out on information in memory. The 

information, stored in memory, must be transferred to a CPU register 

for processing and the result written back to memory. 

So, for example, when an instruction such as the 8086 inc instruction 

is carried out to increment a memory variable (as in inc memvar ), 

its execution involves both a memory read operation and a memory 

write operation. 

Firstly, the value of memvar must be transferred to the CPU where it 

can be incremented by the ALU. This transfer is carried out via a 

memory read operation. Then, once this value has been incremented by 

the ALU, the new value of memvar must be written out to memvar's 

address in memory, via a memory write operation. 

Encoding Instructions in Machine Code 
Instructions are represented in machine code as binary numbers in same 

way as all other information is represented in a computer system. We 

noted earlier that assembly language instructions for most processors are 

broadly similar and have the form: 
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[label]operation [operand ..]  [;comment] 

The general form of a machine code instruction is illustrated in Figure 2 

with the bits making up the instruction being grouped into opcode and 

operand fields. 

Machine Code Instruction 

opcode field operand field 
 

Figure 2: Machine code instruction format 

The opcode field contains a binary code that specifies the operation to be 

carried out (e.g. add, jmp ). Each operation has its own unique opcode. 

The operand field specifies the operand or operands that the operation is 

to be carried out on.. 

It should be emphasised that the instruction encoding for SAM is designed 

for illustration purposes. The aim is to keep it as simple as possible while 

remaining basically similar to the encoding of instructions on real 

processors. The reader is encouraged to look at ways the instructions 

could be more efficiently encoded. 
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Table 1 lists the opcodes of the commonly used SAM instructions in 

binary and hexadecimal. 

Table 1: SAM opcodes 

Instruction Binary Code Hex Code 

move 0000 0001 01 

load 0000 0010 02 

store 0000 0011 03 

add 0000 1000 08 

sub 0000 1001 09 

cmp 0000 1111 0F 

jmp 0001 1111 1F 

je 0010 1111 2F 

  

The operand field of an instruction must be able to specify the registers, 

memory addresses or constants that the instruction is to operate on. SAM 

instructions have at most two operands. If there are two operands then one 

is always a register. 

If a memory address is specified (e.g. in the case of a memory variable or 

label) then the instruction is encoded using 32-bits. 

Since SAM has four general purpose registers we can represent them 

using 2-bit codes as follows: 

00 for r0 

01 for r1 

10 for r2 

11 for r3. 
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Thus, 4 bits are required to represent the two registers that may be used in 

an instruction. Bit numbers 0 and 1, represent the source register and bit 

numbers 2 and 3 represent the destination register. 

Example: Encoding of load r1, X where X refers to a memory 

variable stored at location 00FFH (255D) in memory, 

Instruction and binary encoding Hex encoding (1) 
 load r1, X ; r1 = X 

 0000 0010 1000 01 00  0000 0000 1111 1111 0284 00ffH 
    (address of val) 

B-field>      W-field      

Explanation 
This instruction is encoded using 32-bits. The opcode for load is 0000 

0010 (02H), the destination register r1 is encoded as 01, while the 

source register is encoded as 00, but is not used because the load 

instruction looks for its source operand in memory, hence bit 7 of the 

Bfield is set to 1, indicating a memory operand. Finally, the address of the 

memory variable X (00ffH) is stored in the W-field. 


