

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic I

Second Class

Chapter01: Semiconductor Diodes Lec01_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

p-n Junctions

One end of a silicon or germanium crystal can be doped as a *p*-type material and the other end as an *n*-type material.

The result is a *p-n* junction.

Fundumental of Electronic I Msc: Munther Naif Thiyab

p-n Junctions

At the *p-n* junction, the excess conduction-band electrons on the *n*-type side are attracted to the valence-band holes on the *p*-type side.

The electrons in the *n*-type material migrate across the junction to the *p*-type material (electron flow).

The electron migration results in a **negative** charge on the p-type side of the junction and a **positive** charge on the n-type side of the junction.

The result is the formation of a <mark>depletion region</mark> around the junction.

n

Depletion region

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Diode Operating Conditions Depletion region **No Bias** (+)Ŧ Metal contact D $V_D = 0 \, V$ $I_D = 0 \text{ mA}$ $I_D = 0 \text{ mA}$ $V_D = 0$ V (no bias) $I_D = 0 \text{ mA}$ No external voltage is applied: $V_D = 0$ V • No current is flowing: $I_D = 0$ A • **Only a modest depletion region exists** pп 19

Fundumental of Electronic I Msc: Munther Naif Thiyab

20

Diode Operating Conditions

Reverse Bias

External voltage is applied across the *p-n* junction in the opposite polarity of the *p*- and *n*-type materials.

The reverse voltage causes the depletion region to widen. The electrons in the *n*-type material are attracted toward the positive terminal of the voltage source. The holes in the *p*-type material are attracted toward the negative terminal of the voltage source.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Diode Operating Conditions

Forward Bias

External voltage is applied across the *p-n* junction in the same polarity as the *p*- and *n*-type materials.

The forward voltage causes the depletion region to narrow. The electrons and holes are pushed toward the *p-n* junction. The electrons and holes have sufficient energy to cross the *p-n* junction.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Diode Operating Conditions

Reverse Bias

External voltage is applied across the *p-n* junction in the opposite polarity of the *p*- and *n*-type materials.

The reverse voltage causes the depletion region to widen. The electrons in the *n*-type material are attracted toward the positive terminal of the voltage source. The holes in the *p*-type material are attracted toward the negative terminal of the voltage source.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Diode Operating Conditions

Forward Bias

External voltage is applied across the *p-n* junction in the same polarity as the *p*- and *n*-type materials.

- The forward voltage causes the depletion region to narrow.
- The electrons and holes are pushed toward the *p-n* junction.
- The electrons and holes have sufficient energy to cross the *p-n* junction.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Actual Diode Characteristics

Note the regions for no bias, reverse bias, and forward bias conditions.

Carefully note the scale for each of these conditions.

The reverse saturation current is seldom more than a few microamperes.

 $I_D = I_S \left(e^{V_D / nV_T} - 1 \right)$ $V_T = \frac{kT}{kT}$

24

Fundumental of Electronic I Msc: Munther Naif Thiyab

Diode equation

$$I_D = I_S \left(e^{V_D / nV_T} - 1 \right)$$
$$V_T = \frac{kT}{q}$$

where

- V_T : is called the thermal voltage.
- I_s : is the reverse saturation current.
- V_{D} : is the applied forward-bias voltage across the diode.
- \boldsymbol{n} : is a factor function of operation conditions and physical construction. It has range between 1 and 2. assume n=1 unless otherwise noted.
- **K**: is Boltzman's constant =1.38 x 10^{-23}
- *T*: is temperature in kelvins = 273+temperature in C.
- q: is the magnitude of electron charge = 1.6 x 10⁻¹⁹ C.